IRC Data Reduction Workshop 2007 Summer The IRC Spectroscopy: Data and their Calibration Y. Ohyama AKARI Project Researcher/ISAS/JAXA On behalf of the IRC spectroscopy data reduction team

Today's Topics

- Quick review of the IRC spectroscopy mode
- Basic characteristics of IRC spectroscopy data
 - Raw data
 - Calibration data
- Calibrating the data
 - Overview of basic calibration processes
 - How to work with the "toolkit"
 - Descriptions of each process
 - Actual operation preview
 - More comments on the toolkit and calibration.
 - Problems/difficulties
 - FAQs (if any)
- Q/A session

If you are one of the followings, you are right place to be.

- You know the IRC, you did the observation, and you have received and seen your data, but
 - You do not know how to review the data.
- You have downloaded the "toolkit", but
 - You do not know how to work with them, or
 - You tried to reduce the data with the tools, but it failed, or
 - You finished the reduction, but
 - The results seem strange, or
 - The tools worked, but you do not know what happened, or
- You have lots of complaints/requests/suggestions on the tools.

Quick Review of the IRC Spectroscopy Mode

Infra-Red Camera (IRC) as a Spectrograph

- Telescope/Satellite operation
 - same ones that for imaging mode (pointed attitude)
- Slit
 - Wider aperture for imaging + slit areas
 - For slit-less and slit spectroscopy
- Main Optics (Collimator/Camera)
 - same ones that for imaging mode.
- Disperser
 - prism or grism, mounted on filter wheel
- Array and its operation (clock/exposure time)
 - same ones that for imaging mode.

IRC Spectroscopy Specification

Summary on IRC Spectroscopy Capability								
Camera				Disperser				
Name	Array	FOV (arcmin ²)	Pix scale (arcsec /pix)	ID	Туре	<i>Δ</i> λ (μm)	$\lambda/d\lambda$	Spec. Length
NIR	InSb	9.5' X10.0'	1.46"	NP	prism	1.8– 5.5	22 @ 3.5µm	81 pix
	512 X412			NG	grism	2.5– 5.0	135 @ 3.6µm	261
MIR-S	Si:As	9.1' X10.0'	2.34"	SG1	grism	5.3– 8.3	47 @ 6.6μm	85
	256 X256			SG2	grism	7.5– 13.5	34 @ 10.6µm	91
MIR-L	Si:As	10.3' X10.2'	2.51" x2.39"	LGI	grism	11– 19	19 @ 14.4µm	
	256 x256			LG2	grism	17.7– 25.0	27 @ 20.2μm	79

The Slit-less Mode

Very Basic Ideas for Slit-less Spectroscopy

- Reference (direct) image is taken.
 - We do not have to locate target on tiny slit area. Rather
 - We need to find source locations on the reference image.
 - The coordinates are used as...
 - Origin of the spectral image extraction.
 - Origin of wavelength calibration.
- Spectroscopy image is reduced...
 - First in a similar way as for conventional direct imaging.
 - Then, after spectral image extraction, in a similar way as for conventional slit spectroscopy.

The "Slit-less" Concept

direct image spectral image

Selectable filter wheel

The (conventional) Slit Mode

- Observation (Satellite/Array/Filter wheel controls) will be done in a *same way* as for the slit-less mode.
 - Targets are placed on some slit. *That's it!*
 - Single AOT works for both slit-less and slit modes.
 - You will obtain similar kinds of data.
- Data reduction will be done in a *very similar way* as for the slit-less mode:
 - The same toolkit works on both slit/slit-less data...
 - With only minor changes:
 - Reference image is taken, but it is not essential to locate the slit.
 - Shift-and-coadding of individual exposure frames is disabled.
 - No local sky-subtraction is possible.
 - The toolkit accepts the option for slit-mode data reduction.

Basic Characteristics of IRC Spectroscopy Data

Contents of the IRC Spectroscopy Data Products

- Within single AOT, *both* direct and spectroscopy images are taken.
 - Reference (direct) image
 - For positional reference of the target
 - For wavelength reference points
 - Spectroscopy image
 - For actual science data
- Pre-/Post-dark images are taken as well.
 - This is default for all IRC observation mode.

Preview of Raw/CAL Data

Rawdata in '/rawdata'

AOT04a Raw Data (NIR)

NP

AOT04a Raw Data (MIR-S/L)

Darks (AOT04a)

Pre-dark

Post-dark

Super-dark

Calibration Data in '/CALIBDIR'

Terminal - ssh - 153x5

ohyama@cava3: pwd /home/ohyama/ASTRO-F/IDL/ASTRO-F/IRC_SPECRED/CALIBDIR ohyama@cava3: ls COORDOFFSET/ DARK/ DISTPAR/ FLAT/ MASK/ OBSOLETE/ RESPONSE/ StdSpecData/ WAVEPAR/ ohyama@cava3: []

Masks slit masks & outlier masks

• NIR (UL), MIR-S(UR), and MIR-L(LL)

Spectroscopy Flats

Throughput & Spectral Response

- Throughput: % including telescope/camera/array
- Spectral Response: ADU for long exposure frame/Jy

Performance Summary

• Basically no change from the pre-launch expectation.

System Throughput

Sensitivity

(per AOT04, long, 1sigma)

Example 1: The Planetary Nebula

Example 2: The Infrared-Luminous Galaxy

• Intentionally removed. Sorry.

Calibrating the Data

The Spectroscopy Data Reduction ToolKit "IRC_SPECRED.pro"

- A single IRC_SPECRED works on both <u>slit-less</u> and <u>slit</u> modes.
 - Processing of the slit-mode data requires a subset of the procedures required for processing the slit-less mode data.
 - In the followings, we mainly describe the toolkit for the slit-less mode.

The Business Model of the IRC Business

- Observers observe their science targets.
- The IRC team observes calibration targets, creates standard calibration database, and provides them to observers.
- The IRC team also develops basic calibration tool (the toolkit) for general observers.
- Analyses of the basic-calibrated data will be made thoroughly by observers.
- Observers publish their results, and acknowledge us.
- The IRC team updates the calibration data and tools.

Purposes of the Toolkit

Load IRC AOT04 raw data to...

- convert input images
 - in a form of (X, Y, counts) in (pix, pix, ADU) To output images
 - in a form of (X, Y, wavelength, flux) in (arcsec, arcsec, um, mJy)
- based on standard calibration information (hereafter, the <u>CAL</u>),

To output

- the **basic calibrated data**, and...
- all associated information (the <u>AUX</u> output) obtained while creating the basic calibrated data.

Out-of-purpose of the Toolkit

- 1. NOT to perform any further measurement of quantities for scientific analyses.
 - e.g., identify features, measure various kinds of quantities of the feature
- 2. Co-adding of more then 2 pointing data will NOT be made.

The Toolkit on the WEB

 Download it,
extract it, and
set some environment variables
on your WS.

Computer Environment for the ToolKit

- The toolkit is written with <u>IDL</u>. It also requires <u>DS9</u> FITS viewer and its associated <u>XPA</u> program.
 - The developers use IDL ver 6.1 & 6.2 on Linux PCs.
 - But IDL ver 6.3 and/or other UNIX platform should be fine.
 - It is known to work on Mac OS-X running X11.
 - No report from Windows users.
- The toolkit requires the ASTROLIB IDL library at GFSC and others, in addition to our home-made programs.
 - \${IRC_SPECRED_ROOT}/LIB/... ASTROLIB +\${IRC_SPECRED_ROOT} /ASTRO-F/... our-own PROs.

Schematic Presentation of the Calibration Processes

Processes in Reducing Spectroscopy Data

- Processes common to *conventional imaging* with large-format arrays, or IRC Imaging data processing
 - Dark subtraction (hotpix subtraction)
 - Linearity correction
 - Flat fielding
 - Sky subtraction
 - Shift & add-ing individual frames
 - Source detection
- Processes common to *conventional spectroscopy*
 - Wavelength calibration
 - Flux calibration
 - Extracting 1D spectra
- Processes that is *unique to the IRC spectroscopy*
 - Measuring shift among subframes
 - Spectral image extraction
 - Flat fielding/Color correction for slit-less spectroscopy
 - Wavelength calibration for slit-less spectroscopy.
Review of Input/Output Parameters of the ToolKit

[INPUTs]

- File lists of the raw data to be processed (mandatory):
 - Lists of a reference image and spectroscopy images.
- Target table (optional):
 - If users want to create their own target list with their favorite source detection programs, a target table should be specified as a toolkit option.
 - The toolkit will skip its built-in object detection procedure if the list is set.
- CAL database (mandatory):
 - The standard calibration data set is distributed with the toolkit package.
 - Directory of the CAL database should be set by computer environment parameters.

[OUTPUTs]

Main outputs:

- Object catalogue:
 - A table of object information, including target location, brightness, size, coordinates of the spectroscopy apertures, etc.
- Processed WHOLE images of reference/spectroscopy images:
 - Co-added images of input frames after calibrated for flat, dark, and background.
- A series of EXTRACTED reference/spectroscopy images of each object:

Auxiliary outputs:

- WHOLE Mask images:
 - Images showing the object occupation on reference/spectroscopy images.
- WHOLE Images after removing (masking) detected objects:
 - Combined images masked for the detected objects.
 - The images could be useful to examine object detection completeness, background subtraction quality, total noise quality, etc., of the toolkit.
- A series of EXTRACTED mask images for each object:
 - Images showing location of object overlapping, area of lost information either due to out-of-chip or bad pixels.
- DS9 region files for identifying extraction area, zero-th order light occupation, etc.

The Calibration Flowchart

Review of Basic Calibration Processes in the ToolKit

- [REF]: procedure of reference images
- [SPEC]: procedure of spectroscopy images
- [REF/SPEC]: procedure of both
- [WHOLE]: procedures of whole image, before source extraction
- [EXTRAC]: procedures of extracted images.

Dark Subtraction [REF/SPEC/WHOLE]

- The standard dark images will be provided in the CAL database.
- Note, however, simple subtraction of the standard dark image may fail to work correctly because of dark level fluctuation among frames
 - Due to both the memory effects and the 1st frame effect.
- The toolkit measures the dark count level in each image, and then subtracts the scaled standard dark images.
 - The measurement will be made on a small area where the focal-plane slit mask shadows the background light.

Applying bad-pixel/slit Masks [REF/SPEC/WHOLE]

- Standard bad-pixel masks will be provided in the CAL database.
 - Some bad pixels (mostly hot pixels) and small clusters of them are known to exist on both the NIR and MIRS/L chips.
- The masks will be taken into account in all toolkit procedures.
 - Such bad pixels cannot be subtracted off properly with the dark subtraction procedure.
- Slit masks will be also applied for slit-less spectroscopy data.
 - This process will be skipped for slit data, of course.

Flat Fielding [REF/WHOLE]

• Flat fielding will be made by dividing the dark-subtracted images with the flat images.

Sky Subtraction [REF/WHOLE]

- Sky will be removed from each subframe.
 - By locally fitting the sky image,
 - With object rejecting algorithm.

Frame Stacking [REF/WHOLE]

- NIR: no image stacking is possible.
- MIR-S/L: shift-and-coadd three subframes with median combine mode.

– To remove cosmic rays

Object Detection [REF/WHOLE]

- Objects will be detected on the reference images.
- The toolkit converts their coordinates into that in the spectroscopy images based on the CAL database information.
 - In the slit-less mode, wavelength zero point and location of the spectroscopy apertures are determined by the object location on the reference images.
 - No source detection will be made on the spectroscopy images.
 - This is because all the sources detected in the spectroscopy images should also be detected on the reference images.
- The toolkit utilizes the DAOFIND code to automatically detect objects in the reference images.
 - The detection parameters (noise level, detection threshold over the noise level, and source size) can be changed interactively and iteratively within the toolkit.
- The toolkit also has a capability to accept a user-created target table as an input.
 - If the list is set, the toolkit skips the object detection procedure.

Flat Fielding [SPEC/WHOLE]

- Divide each subframe by spec-flat images.
- This would create globally-flat background.

Sky Subtraction [SPEC/WHOLE]

- Local sky is measured by fitting with
 - Source rejection algorithm
 - Masks made based on detected sources on the reference image

Frame Stacking [SPEC/WHOLE]

- Shift-and-adding sub-frames
- While removing cosmic-ray events.

Spectral Extraction [SPEC/WHOLE]

- Spectral images of each source are extracted
 - Extraction box coordinates (Xs, Ys) are calculated based on
 - source coordinates on reference image (Xi, Yi)
 - coordinate offset (dX, dY)

and

- Extraction box size (width, length)
- Extracted images cover both
 - Source area
 - Surrounding sky area
- Spectral masks will be also created.

Wavelength Calibration [SPEC/EXTRC]

- Basically no image transformation will be made.
- Rather, wavelength array will be created.
 - For grisms...
 - Wavelength=linear_function(dY, d_lambda, lambda0)
 - dY: pixel increment along Y, w.r.t. center of extracted spectral image.
 - D_lambda: wavelength inclement per pix (um per pix)
 - Lambda0: wavelength (um) at reference position (image center)
 - For prism...
 - Wavelength=3rd-order-poly(Y)
 - Function is measured based on pre-launch laboratory test.
 - Single wavelength array per whole image
 - That is common to all extracted spectral images.

Sky Subtraction [EXTRAC/SPEC]

- Any remaining sky is subtracted.
 - Sky is an average of surrounding sky area of each extracted spectral image.

Color Correction [SPEC/EXTRAC]

- Ideally, flat response is a function of
 - Pixel (X and Y)

And

- Wavelength (lambda)
- Spectral flat correction applied at the early stage of calibration over the whole image was
 - a function of pixel, but
 - not a function of wavelength.
- We need somehow correct color-dependence of the flat response.
 - After calibrating wavelength.

Flux Calibration [SPEC/EXTRAC]

- Or spectral response correction
- Flux(mJy, lambda) =count(ADU,lambda)/response(lambda)
- Response is a 1D function, but actual flux calibration is made on wavelength-calibrated 2D images.
- Then, extract 1D spectra in the plot routine.

Recommended Processing Order

NIR data provide some basic information for processing MIR-S/L data.

- 1. NP or NG, without source table.
- 2. (NP or NG, with source table)
- 3. SG1 with or without source table.
- 4. (SG2 with or without source table.)
- 5. LG2 with or without source table.

Examples:

- If you want to reduce MIR-S data, first reduce NIR, then SG1/2.
- If you want to reduce MIR-L data, first reduce NIR and SG1, and then MIR-L.

Operation of the Toolkit

Input Information

• File lists

ohyama@cava: ls *lst	ohyama@cav
DARK_MIR.lst L18W.lst N3.lst NP.lst SG1.lstDARK_NIR.lst	52.1651
ohvama@cava: ls *tbl	73.3098
target_MIRS.tbl	32.2403
target_MIRL.tbl	94.7317
5020056_5_N3_NP_target_table.tbl	114.406
5020056_5_S9W_SG1_target_table.tbl	129.454
5020056_5_S9W_SG2_target_table.tbl	159.639
onyama@cava: cat N3.1st F54919 N fits	213 167
ohyama@cava: cat NP.lst F54911_N.fits	212.757
F54913_N.fits	206.567
F54915_N.fits	167 850
F54917_N.fits	167.850
F54921_N.fits	222.670
F54925_N.IIIS E54925_N_fite	222.079
1°J7/2J IN.1113	

F54927_N.fits

• Source Table

17.7651

25.5560 113.417

78.1639 74.0791

100.110

62.0461

23.4816

85.6808 127.160

221.823

221.823

234.424

ohyama@cava: more 5020056_5_S9W_SG1_target_table.tbl

Step 1: Start the Pipeline The case of NP/no source table

		000		X IRC_SPECRED messages	
000	🔀 *idl*	Data loaded for	5124003	1 N3_NP	
File Edit	Options Buffers Tools Debug Complete In/Out Signals Help				
\$	💥 💥 🕕 > += 4" 4" 6= 6= 6= e= 📑 🖬 🐂 🔭				
$ \begin{array}{c} 10L \\ 1DL $					
IDL> IDL> IDL> IDL> IDL> i G /PV/SF	irc_specred,5124003,1,"","N3.lst","NP.lst","N3_NP",root_dir='~/hd1.cava/IRC P PEC/FLUX/'				
++*idl*	(IDL-Shell:run Abbrev)-[0:IRC_SPECRED]L298Bot	A			
				Clear Hide	/

- Left: Issue a pipeline command at the IDL command line.
- Right: A log window will show up.

Example of IRC_SPECRED Commands

- Slit-less
 - irc_specred,5020056,1,"","N3.lst","NP.lst","N3_NP",ro ot_dir='/data/IRC/TEST/'
- Slit-less + target table
 - irc_specred,5020056,1,' MYOBJECT.tbl',"S9W.lst","SG1.lst","S9W_SG1",root _dir='/data/IRC/TEST'
- Slit
 - irc_specred,1400043,1,"","N3.lst","NG.lst","N3_NG",r oot_dir='/data/IRC/TEST/',/NS_spec

Step 2: Screening sub-frames

- NIR sub-frames are shown on ds9.
 - Note: Typical AOT04a gives 8 or 9 sub-frames.

Self-measured Information or DATABASE

ohyama@cava: ls *dat

NP_SHIFT_XY.dat

NP_SPECBOX_SHIFT_X.dat

NP SPECBOX SHIFT Y.dat

ohyama@cava: cat NP_SHIFT_XY.dat

- 0 0.00000 0.00000
- 1 0.00000 0.00000
- 2 0.00000 0.00000
- 3 0.00000 0.00000
- 4 -1.00000 0.00000
- 5 -1.00000 0.00000
- 6 -1.00000 0.00000
- 7 -4.00000 0.00000

ohyama@cava: cat NP_SPECBOX_SHIFT_X.dat

0.00000

ohyama@cava: cat NP_SPECBOX_SHIFT_Y.dat

-0.573364

This information will be used for coming MIR-S/L processing.

Step 3: Tweak 'find' parameters (with auto-detection sub-program)

Step 4: 'All done'/'Finish'

Step 5: Examine Spectra with plot_spec_with_image

... And more spectra (SG1/2)

Working with the Plotting Tool

- Basic (for plotting spectrum of source_id=1):
 - plot_spec_with_image,wave_array,specimage_n_wc,m ask_specimage_n,source_table,1
- Options:
 - Plotting related
 - yrange=[-1,5]: plotting range along Y axis
 - Space_offset=1: move plotting region along X (space)
 - Nsum: plotting width
 - Smooth=3: box smoothing along wavelength.
 - /no_mask: plot without masking
 - With_image related
 - /with_image: show an extracted image along with spectra.
 - tvtop=10,tvbottom=-2: display range (top and bottom)
 - Output related
 - Png='PNG file', ps='ps file', ascii='ascii-table file'

List of Output Products

2

000 Terminal - ssh - 136x22 ohyama@cava3: pwd /home/ohyama/hd1.cava/IRC/PV/SPEC/FLUX/5124003.1/irc_specred_out ohvama@cava3: ls 5124003.1.N3_NG.refimage_ba.fits 5124003.1.N3_NP.residual_specimaae_ba.fits 5124003.1.S9W_SG1.specimaae_mask.fits 5124003.1.N3_NG.refimage_bg_indiv.fits 5124003.1.N3_NP.source_table.tbl 5124003.1.S9W_SG1.specimaae_mask_indiv.fits 5124003.1.N3_NG.refimage_mask.fits 5124003.1.N3_NP.specimage_bg.fits 5124003.1.S9W_SG1.specimage_wc_indiv.fits 5124003.1.N3_NG.residual_refimage_bg.fits 5124003.1.N3_NP.specimage_fc_indiv.fits 5124003.1.S9W_SG1_refimage.reg 5124003.1.N3_NG.residual_specimage_bg.fits 5124003.1.N3_NP.specimage_mask.fits 5124003.1.S9W_SG1_specimage.reg 5124003.1.N3_NG.source_table.tbl 5124003.1.N3_NP.specimage_mask_indiv.fits 5124003_1_N3_NG_target_table.tbl 5124003.1.N3_NG.specimage_bg.fits 5124003.1.N3_NP.specimage_wc_indiv.fits 5124003_1_N3_NP_target_table.tbl 5124003.1.N3_NG.specimage_fc_indiv.fits 5124003.1.N3_NP_refimage.reg 5124003_1_S9W_SG1_target_table.tbl 5124003.1.N3_NG.specimage_mask.fits 5124003.1.N3_NP_specimage.reg NG_SHIFT_XY.dat 5124003.1.N3_NG.specimage_mask_indiv.fits 5124003.1.S9W_SG1.log NG_SPECBOX_SHIFT_X.dat 5124003.1.N3_NG.specimage_wc_indiv.fits 5124003.1.S9W_SG1.refimage_ba.fits NG_SPECBOX_SHIFT_Y.dat 5124003.1.N3_NG_refimage.reg 5124003.1.S9W_SG1.refimage_bg_indiv.fits NP_BP66.png 5124003.1.N3_NG_specimage.reg 5124003.1.S9W_SG1.refimage_mask.fits NP SHIFT XY.dat 5124003.1.N3_NP.log 5124003.1.S9W_SG1.residual_refimage_bg.fits NP_SPECBOX_SHIFT_X.dat 5124003.1.N3_NP.refimage_bg.fits 5124003.1.S9W_SG1.residual_specimage_bg.fits NP_SPECBOX_SHIFT_Y.dat 5124003.1.N3_NP.refimage_bg_indiv.fits 5124003.1.S9W_SG1.source_table.tbl tmp/ 5124003.1.N3_NP.refimage_mask.fits 5124003.1.S9W_SG1.specimage_bg.fits 5124003.1.N3_NP.residual_refimage_ba.fits 5124003.1.S9W_SG1.specimage_fc_indiv.fits ohyama@cava3: 🛛
Review of FITS Outputs

<u>REFIMAGE</u>

- Whole:
 - Refimage_bg
 - Refimage_mask
 - Residual_refimage_bg
- Extracted:
 - Refimage_bg_indiv
 - Refimage_mask_indiv
- Region file
 - Refimage.reg

SPECIMAGE

- Whole:
 - Specimage_bg
 - Specimage_mask
 - Residual_specimage_bg
- Extracted:
 - Specimage_wc_indiv
 - Specimage_fc_indiv
 - Specimage_mask_indiv
- Region file
 - Specimage.reg

<u>Others</u> Source table.tbl Processing log.log

[WHOLE IMAGE PRODUCTs] SG1

specimage

refimage

[WHOLE IMAGE PRODUCTs] NG

specimage

[WHOLE IMAGE PRODUCTs] SG1 masks

00

[EXTRACTED PRODUCTs] SG1

Help

6 8

4

And their overlapping masks

Specimage: _wc vs. _fc

WC=Wavelength Calibrated

FC=Flux Calibrated

Some Featured Calibration Topics

- Cosmic-ray removal
- Measuring relative shift among subframes
- Sky subtraction and source masking
 - Scattered light
- Distortion?
- Determination of wavelength reference position
- Identifying zero-th order light
- Correcting spectral tilt
- Flats in more details
- Spectral resolution
- Treatment of Source Overlapping

Removal of Cosmic Ray Events

- The cosmic ray events will be identified as outliers while combining frames with a clipping-averaging algorithm.
- Exception:
 - NIR refimage
 - MIR-S/L short frames

Measuring Relative Shift among Subframes

- Measurement will be done only in
 - NIR for SPEC (NP/NG)
 - MIR-S for REFIMAG (S9W)
- And then the results are converted for shifting
 - MIR-S/L for SPEC (SG1/2)
 - MIR-L (LG2) for REFIMAG (L18W)
- By using all available bright field stars
 - Regardless of sources specified in the target table.
- Method: cross-correlating whole images
 - among SPEC and REFIMAG subframes
 - among long vs. short subframes

Sky Subtraction and Source Masking

- For the whole images:
 - NIR/SG1: outlier-resistant lower-order fit will be applied.
 - before stacking
 - SG2/LG2: smaller scale local filter will be applied.
 - where sky level is higher, and is more structured.
 - Object-masking feature will be made available in the next release of the toolkit.
- For the extracted images:
 - An average value of the surrounding sky is subtracted.
 - For subtracting any remaining sky.
 - But the sky level is negligibly small for the extracted images.

Correcting Spectral Tilt

- Due to miss-alignment of disperser's insertion angle to the chip Y axis, dispersion direction is slightly tilted from the Y axis.
 - Tilt angle is less than dx=1 pix per dy=50 pix
- The tilt is corrected by simple image transformation
 - Based on the tilt angle information stored in the CAL database.

Distortion?

- (A sort of) Distortion is corrected for
 - wavelength zero-point shift in NP
 - spectral tilt
- Other kind of spectral/image distortion will NOT be corrected.
 - Since the distortion is negligibly small for spectral calibration.
- Note: no distortion will be corrected even on the reference images.
 - To find simple REF/SPEC source position matching.
 - Therefore, output of imaging and spectral calibration toolkits differ from each other.

Determination of Wavelength Reference Position

Wavelength reference-point is set by

- 1. Source position on the REF image
- And is further corrected by considering
 - 2. Satellite jitter
 - 3. Spectral distortion
- 2: Jitter is measured in NP/NG, and is converted for MIR-S/L, due to brightness of field stars at NIR.
- 3: Distortion exists only in NP, and is corrected based on distortion table in the CAL database.

Identifying Zero-th Order Light

- Location of the zero-th order light is calculated from object positions on the reference images.
- The toolkit creates region marks showing locations of the zero-th order light images.
- By comparing actual zero-th order light image location with the predicted location, one may find wavelength offset for further correcting wavelength reference position.
- No subtracting the zero-th order image will be made.

Spectral Resolution

- Spectral resolution changes from object to object, if they are not point sources.
 - The spectroscopic resolution of the slit-less spectroscopy mode is determined by the size of the object.
 - Deconvolution of the spectra may introduce unexpected uncertainties, and thus not implemented in the toolkit.
 - Users should compare the observed spectra with the image size on the reference image to interpret the spectra properly.

(NO) Treatment of Source Overlapping

- When two or more objects are close to each other on the reference images, one spectral image could overlap on another one.
- The toolkit outputs mask images/region files to show overlapping.
 - If overlapping happens, a part of the spectral information will be lost since the software cannot separate overlapping spectral images to restore the original information.

Flat Fielding on Spec. Images

- Calibration of <u>wavelength-dependent flat</u> and <u>spectral response</u> is very important.
- However, it is not simple in slit-less spectroscopy mode.
 - The object itself defines the aperture of the spectra, and its location before actually performing the observation is unknown.
 - One pixel of the chip detects both background and object light.
 - The background light is a sum of all light within the spectral coverage of the dispersing elements.
 - Only a fraction of the light whose wavelength is determined by location of the object is detected on the pixel.
 - We need a cube of flat images (i.e., 3D information of the flat response over X, Y, and lambda axes) to fully calibrate the slit-less spectroscopy images.
 - But it will not be possible to obtain such a cube.
 - Due to lack of any good calibrators both on sky and in the laboratory.

[Flat Equation]

• We assume the following simple approximation of the spectral-flat response.

Flat re	sponse =	
	Sky flat	(position-dependent and wavelength-independent)
	X Object flat	(position-dependent and wavelength-dependent)
and		
Object	flat =	
	Object flat 1	(position-dependent and weak wavelength-dependent)
	X Object flat 2	(only wavelength-dependent)
or		
	Object flat 1	(position-dependent and weak wavelength-dependent)

X spectral response(only wavelength-dependent)

- We checked validity of this flat calibration process during the PV phase.
 - By examining spectra of the same spectroscopic standard stars observed at different location on the chip.
 - So far no big troubles have been reported.

Flat Fielding - part 1 -[Sky flat]

- Sky flat will be made by combining many actually observed frames.
- The spectroscopy images will be divided by this background flat.
 - Then, images of object spectra, over flat background light, will be obtained.

Flat Fielding - part 2 -[Color Correction/ Spectral Response Calibration]

- Color correction images (2D) is made for each extracted spectroscopy image...
 - Given a pixel, by interpolating two imaging superflats taken with different broad-band filters, along wavelength direction, for wavelength of the pixel.
- Then, the spectral response curve is used to find the flux of the spectra.
 - The response curve is location-independent (1D table of spectral response vs. wavelength).

Comments on Individual CAL Items

- Superdark
 - Adopt superdark images for imaging pipeline.
- Spectroscopy superflats
 - Combined and normalized images of large number of 'serendipitous sky' images.
 - Right now, only one flat is available per disperser, I.e., no temporal change is considered.
 - For slit flats, spectral normalization was also made.
- Imaging superflats for color correction
 - Adopt superflat images for imaging pipeline.

Continued.

- Sensitivity Calibration
 - Flux standard star observations have been made.
 - Sensitivity monitor has been made, but no temporal sensitivity change is found.
- Wavelength Calibration
 - Emission-line objects were observed for calibrating the wavelength.
 - WR stars and compact PNe for slit-less area
 - Extended PNs for slit.
 - No grism/prism insertion trouble was found.
 - Spectral tilt is fixed.

Problems/Difficulties One Need to Know in Reducing the Data

- Satellite jittering correction:
 - Sometimes it is difficult to automatically measure relative shifts with cross-correlation method.
 - Sometimes it is also difficult to find wavelength reference point in NP/NG.
- Array anomalies correction:
 - Similar kinds of anomaly seen in imaging data will be also seen in spectroscopy data.
 - Right now they are only partially corrected in empirical ways.

Cont.

- Background un-uniformity
 - Scattered light of the Earth shine makes it very difficult to subtract background in SG2/LG2, limiting final S/N of the spectra.
- Temporal change of flat pattern:
 - Time dependent flat response is known to exist.
 - The "soramame" feature seen in MIR-S images are also seen in SG1/2.

Cont.

- Hot pixels on MIR-L:
 - Larger number of hot pixels can be seen in LG2.
 - They often limit final S/N of spectra.
- Flat-fielding the NG slit spectra:
 - Due to faintness of the sky, flat-fielding might worsen the S/N of the spectra.
- Source confusion on NIR:
 - This has been known before launch.
 - But you may have surprised to see how serious the problem is.

Q/A Session

- Any questions?
- Any suggestions?
- Any complaints?