SPICA 赤外線分光 による銀河形成の研究

1. INTRODUCTION

- 2. 星形成と [NeII], [NeIII]
- 3. 高階電離、AGN 現象と [OIV], [NeV]
- 4. SAFARI
- 5. 米国装置 WISPIR/BLISS/µ-SPEC

SPICA MIR/FIR焦点面装置に望むサイエンス

☆ Dust/PAR emission による撮像・測光 High Sensitivity L(FIR)[~]10¹¹L_{sun} galaxies @ z[~]3 SPICA resolution [~]2" == 10-20kpc @ z[~]1-5 個々の銀河の内部構造は分解出来ないが 銀河相互作用は分解できる。

☆ Fine Structure Lines (微細構造輝線)

銀河星形成領域内部における電離ガス (吸収の影響なし) 銀河中心核深部における銀河中心核起源の電離ガス

微細構造定数?

line	λ rest (µm)	Probes of	z =	Z	<u>z=3</u>
HI Br α	4.05	metallicity (H) / extinction			
HI Pfα	7.46	metallicity (H) / extinction			
Arll	7.0	excitation	M	IRX.	
ArIII	9.0, 21.8	excitation			
Nell	12.8	SFR / excitation / metallicity			
Nelli	15.6, 36.0	SFR / excitation / metallicity			
NeV	14.3, 24.3	AGN indicator			
SIV	10.5	Excitation			
SIII	18.7, 34	Excitation	V		
Sill	34.8	PDR			
OIV	25.9	AGN indicator			
OIII	51.8, 88.3	Density / metallicity	S	AF/	ARI
01	63.1, 145	PDR	1-	US,	Α
NII	122, 205	Metallicity			
NIII	57.3	Metallicity			
CI	370	Molecular gas			
CII	158	PDR			

代表的な微細構造輝線(電離ポテンシャルと臨界密度)

FIG. 1.—Ionization potential (in eV) vs. critical density (cm^{-3}) of the forbidden infrared lines (*filled triangles*) compared to some optical forbidden lines (open circles).

Spinoglio and Malkan (1992)

Spitzer IRS 低分散 (R~100) 及び 中分散 (R~600)による NGC6240 スペクトル

ISO-SWS によるM82 のスペクトル

FIG. 4.—ISO-SWS mid-infrared spectrum of M82 (full scan AOT SWS01). The spectral resolution varies from ~1000 at short wavelengths to ~500 at long wavelengths. The "jumps" in the continuum level at 12.0, 27.8, and 29.5 μ m are caused by the increase in aperture size and the fluctuations in the continuum, especially in the 4–5 μ m region, are mainly due to noise.

Forster-Schreiber et al. 2001

Armus et al. 2006

Herschel PACS による遠方銀河のスペクトル

Miolino et al. 2009 APEX [CII] Iline @z=4.43

CSO Z-Spec による遠方銀河のスペクトル

Lupu et al. (2010)

Strum et al. 2010

SPICA Science Workshop で発表の機会があるたびに 言ってきたことですが・・・

遠方銀河の中間・遠赤外線分光は、 1に感度、2に感度、 3・4が無くて5に感度 あと、R[~]1000

$$\log L_{[\text{Ne II}]+[\text{Ne III}]} = (0.98 \pm 0.069) \log L_{\text{IR}} - (2.78 \pm 0.70) (2)$$

ULIRG L(IR)~10¹² L_{sun}
→ @ z=1 F(NeII+NeIII) ~ 8 × 10⁻¹⁹ W/m² MIRXXXX?
→ @ z=2 F(NeII+NeIII) ~ 1 × 10⁻¹⁹ W/m² SAFARI/USI?
→ @ z=3 F(NeII+NeIII) ~ 5 × 10⁻²⁰ W/m² SAFARI/USI?
さらに、この比を議論するためには、約1桁+の感度が必要

MIRXXXX 600sec I sigma Line Sensitivity

1. INTRODUCTION

2. 星形成と [NeII], [NeIII]

- 3. 高階電離、AGN 現象と [OIV], [NeV]
- 4. SAFARI
- 5. 米国装置 WISPIR/BLISS/µ-SPEC

[NeIII] (13.6µm) / [NeII] (12.8µm) Ratio

- □ Hardness of lonizing radiation
 - Starburst Age
 - Upper Mass Limit in IMF
 - Metallicity (lonizing stars / gas)
- mildly depends on Ionization Parameters
- mildly depends on Electron Density
- □ little depends on Extinction
- □ AGN can be separated by [NeV] or [OIV]

Constraining IMF of High-z Star-Forming Galaxies
 Drawing the whole demography of galaxies

 (observing short-timescale episodic star formation at high-z)

[NeII] 12.8 μ m⁻⁻ basic indicator of star-formation/ionized gas

1. 電離ポテンシャル 21.56 eV
 2. Dominant coolant in HII region
 3. 大きな Critical density 4.3x10⁵cm⁻³
 4. Ne/H=1.2x10⁻⁴ (solar) 多量に存在

Ho et al. 2007

太陽の元素組成比

地上 N-band 分光 [Ne II] (12.8µm) [Ar III] (9.0) [S IV] (10.5) HII 銀河での「小さい」 [Ar III] / [NeII] 比

ISO の時代

Thornley et al. 2000 Nearby Starburst Galaxies Burst Age Martine-Hernandez et al. 2002 Galactic HII Region Metallicity Rigby and Rieke 2004 Nearby Starburst IMF Upper Mass Cut Martine-Hernandez et al. 2005 (地上) NGC5253 Combination Spitzer の時代

Snijders et al. 2007 Diagnostics Beirao et al. 2008 M82 / Brandle et al. 2006 Starburst / Barnard-Salas et al. 2009 Starburst / Deo et al. 2007 Seyfert / Dale et al. 2009 Nearby Gals / Farrah et al. 2007 ULIRG / Houck et al. 2007 I0µm-sample / Inami et al. 2010 IIZw096 / Pereira-Santaella et al. 2010a,b /Tommasin et al. 2007 I2µm / Veilleux et al. 2010 AGN / Watson et al. 2010 GRB / Whelan et al. 2007 Mrk297 / Willet et al. 2009 Radio Galaxies / Wu et al. 2006 BCG

Burst Age and [Nell]/[Nell] ratio

NGC5253 Super Star Cluster

M82

(Forster-Schreiber et al. 2001;(ISO) Beirao et al. 2008 (Spitzer IRS)

Blue Compact Dwarves (e.g., Wu et al. 2006 / Watson et al. 2010)

[NeIII]/[NeII] ratio for Galaxies and AGN

Pereira-Santaella et al. 2010

異なるシンボルはそれぞれの銀河

近傍 LIRG の銀河内の スペクトル

様々な銀河の Integrated スペクトル

[Nell]/[Nell] ratio for Galaxies and AGN

Pereira-Santaella et al. 2010

Figure 14. Range of the observed [Ne III]15.56 μ m/[Ne II]12.81 μ m ratio from the spectral maps. The galaxy symbol (as in Figure 12) indicates the value of the ratio in the nucleus. The horizontal mark is the median of the ratio of each galaxy. The solid gray line is the median of the medians and the dotted line is the median of the nuclear ratios. The black line indicates the typical uncertainty of the ratios.

Figure 15. Range of the observed [S III]18.71 μ m/[Ne II]12.81 μ m ratio from the spectral maps. The symbols are as in Figure 14. The density label corresponds to the [S III]18.71 μ m/[Ne II]12.81 μ m ratio predicted by the Snijders et al. (2007) models for solar metallicity, $q = 1.6 \times 10^8$ and age = 5 Myr. The [Ne III]15.56 μ m/[Ne II]12.81 μ m ratio predicted using these parameters is \sim 0.1–0.2 which is in agreement with the observed ratio.

(A color version of this figure is available in the online journal.)

中心核は最も低い [Nell] / [Nell] 比 → 高密度による?

Snijders et al. 2007

Log([NeIII]/[NeII])

[NeIII] (13.6µm) / [NeII] (12.8µm) Ratio

- □ Hardness of lonizing radiation
 - Starburst Age
 - Upper Mass Limit in IMF
 - Metallicity (lonizing stars / gas)
- mildly depends on Ionization Parameters
- mildly depends on Electron Density
- □ little depends on Extinction
- □ AGN can be separated by [NeV] or [OIV]

Constraining IMF of High-z Star-Forming Galaxies
 Drawing the whole demography of galaxies

 (observing short-timescale episodic star formation at high-z)

Large-scale distribution of ~1500 Ly α Emitters

200Mpc (comoving)

1. INTRODUCTION

- 2. 星形成と[NeII], [NeIII]
- 3. 高階電離、AGN 現象と [OIV], [NeV]
- 4. SAFARI
- 5. 米国装置 WISPIR/BLISS/µ-SPEC

AGN による電離ガス [NeV] (14.3µm) / [Nell] (12.8µm) Ratio [O IV] (25.9µm) / [Nell] (12.8µm) Ratio 等 AGN の存在 Power Source AGN / Starburst Ratio e.g., Spinoglio and Malkan 1992; Genzel et al. 1998; Strum et al. 2002; Weedman et al. 2005; Armus et al. 2007; Farrah et al. 2007 Tommasin et al. 2007; Veilleux et al. 2009; Pereira-Santaella et al. 2010

Pereira-Santaella et al. 2010 from IRS Obs 426 Galaxies

応用: [NellI] "excess" by Starburst Component

Observing Compton-thick AGN (in forming galaxies)

Gouldings et al. 2010 SDSS \rightarrow AGN XMM \rightarrow undetected

AGN による電離ガス [NeV] (14.3µm) / [Nell] (12.8µm) Ratio [O IV] (25.9µm) / [Nell] (12.8µm) Ratio 等 AGN の存在 Power Source AGN / Starburst Ratio e.g., Spinoglio and Malkan 1992; Genzel et al. 1998; Strum et al. 2002; Weedman et al. 2005; Armus et al. 2007; Farrah et al. 2007 Tommasin et al. 2007; Veilleux et al. 2009; Pereira-Santaella et al. 2010

- **1. INTRODUCTION**
- 2. 星形成と[NeII], [NeIII]
- 3. 高階電離、AGN 現象と [OIV], [NeV]
- 4. SAFARI
- 5. 米国装置 WISPIR/BLISS/µ-SPEC

SAFARI

Merit

Relatively Large FoV, simultaneous (serendipitous discovery expected)

Demerit

感度が低い(遠方のおもしろい銀河にとって)。 高赤方偏移 (z>1) では、非常に明るい 天体のみ。

1. INTRODUCTION

- 2. 星形成と[NeII], [NeIII]
- 3. 高階電離、AGN 現象と [OIV], [NeV]
- 4. SAFARI
- 5. 米国装置 WISPIR/BLISS/µ-SPEC

BLISS / WISPIR は万難を排して搭載するべき。

感度的には BLISS が SPICA に当初期待された 科学的観測能力をもたらし得る。

WISPIR でも z~2-3 銀河の微細構造輝線 診断観測は可能。