付 録D 執筆者リスト

章	節	著者
第 1章		中川貴雄、村上浩
第2章	2.1	田村元秀 *、松本敏雄
	2.2, 2.3	今西昌俊、上田佳宏、大内正己、大向一行、児玉忠恭、須佐 元、中川
		貴雄、西 亮一、松原英雄 *、松本敏雄、山田 亨 *、吉田直紀
	2.4	相川祐里、岡本美子、釜谷秀幸、田村元秀 *、長田哲也、林 正彦、表
		泰秀
	2.5	井田 茂、北村良実、小久保英一郎、田村元秀 *、平尾孝憲、本田充彦
	2.6, 2.7	泉浦秀行 *、尾中 敬、川端弘治、中島 紀、宮田隆志、山村一誠
	2.8	大坪貴文、春日敏測、河北秀世、佐藤祐介、関口朋彦、長谷川 直、古
		荘玲子、渡部潤一*
第3章		中川貴雄、村上浩
第 4章		小松敬治、斉藤宏文、中川貴雄、野田篤司、村上浩 (執筆協力 1)
第5章	5.1	塩谷圭吾、片聖宏一
	5.2	岡田陽子、尾中敬、片 坚 宏一 *、酒向重行 *、左近樹、高橋英則、藤代
		尚文、宮田隆志、度會英教
	5.3	Lyu Abe, 泉浦秀行、塩谷圭吾 *、岡本美子、田中深一郎、田村元秀、本
		田充彦
	5.4	塩谷圭吾、川田光伸 *、松浦周二、ヨーロッパ SPICA Consortium
	5.5	松原英雄 *、米 BLISS team
第6章		塩谷圭吾、尾中敬、金田英宏 * 、油井由香利 (執筆協力 $1,2,3)$
第7章		岡本 篤、小川博之、杉田寛之 *、永井大樹 (執筆協力 2)
第8章		小川 亮、小川博之、紀伊恒男、小松敬治、斉藤宏文、中川貴雄、野田
		篤司、橋本樹明、村上浩 (執筆協力 1, 4)
第9章		中川貴雄、村上浩 (執筆協力 1, 2)
第 10章		村上浩、(執筆協力 1, 2, 4)
第11章		塩谷圭吾、中川貴雄
第12章		小川 亮、中川貴雄
第13章		塩谷圭吾、油井由香利*
第 14 章		中川貴雄、油井由香利
第15章		塩谷圭吾、中川貴雄、村上浩
第16章		片坚宏一、芝井広、中川貴雄*、松原英雄

注釈

- 上記*は、該当章または節のとりまとめメンバーを示す。
- ヨーロッパ SPICA Consorthium メンバーおよび米 BLISS team メンバーについては、15章を参照。

• 執筆協力

- 1. NEC 東芝スペースシステム株式会社
- 2. 住友重機株式会社
- 3. 三菱電機株式会社
- 4. NEC 航空宇宙システム株式会社

付 録E コミュニティからのサポート

SPICA 計画は、国内外より強い関心を呼んでいる。ここでは、実際に既に進んでいる国際協力も 含めて、国内外のコミュニティからの SPICA 計画に対するサポート・レターを掲載する。

- 1. 国内からのサポート
 - (a) 「2010 年代の光赤外天文学: 将来計画検討報告書」(光赤外天文学将来計画検討会・編) より「序章」
- 2. 国際的サポート
 - (a) アメリカ
 - i. BLISS team
 - ii. JPL (chief scientist)
 - (b) ヨーロッパ
 - i. イギリス
 - ii. オランダ
 - iii. フランス
 - iv. ドイツ
 - (c) 韓国
 - i. 赤外線ワーキンググループ
 - ii. 韓国天文台と宇宙科学研究本部との間の LOA

図目次

1.1	SPICA の概念図	3
1.2	太陽-地球系のラグランジュ点	4
1.3	21世紀初頭に計画されている赤外線天文衛星ミッションの測光感度の比較。SPICA	
	は、中間・遠赤外線領域において、他のミッションよりも2桁以上優れた感度を有	
	する。	4
1.4	SPICA の分光感度 (長波長部分のみ)。同口径の Herschel と比べても 2 桁以上の感	
	度向上が期待される。一部の波長では ALMA の感度すら上回る。	5
01	(左) 可祖光で目たオリオン座と (左) 清赤仏娘で目たオリオン座の比較、清赤仏娘	
2.1	(生) 引先儿 (元にオリオノ座C、(日) 逐が介添 (元にオリオノ座の比較。逐が介添 でけ、可相半娘を吸収していた早期物質(ダスト)が知測可能となる。これに上り	
	ては、「祝儿縁を吸収していた生间初員(アスト)が観測り能となる。これにより、 見生式領域の公在が明確に堪き出されている	10
იი		10
2.2	程版111の生の主成期に期待される小系力」 「牌談。美际には、これらの 「単誌のへて くま た 信称して 知測 た れる 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た た 、 た 、 た た 、 た た 、 た た 、 た た 、 た た 、 た た た 、 た	11
0.9		11
2.5		
	にたり速が外は銀河コンフェーション限介)のコンクマ点線検山限介と、 $z = 2.4$	19
9.4	にのいた Arp220 の 5ED こそに致した。	12
2.4 9.5		10
2.0 2.6	小小線視域に存在する数多くの小の leature (Van Disnoeck & Diake 1998)	19
2.0		
	即止なにのりる次で $J_{2.04}\mu$ III C 2.09μ III の派動進移陣線を示し、ての上の黒線と 薄い宇娘はそれぞれ 2.07μ m と 10.09μ m の独同転連移螺娘を示す。 ドナごの話類	
	海い美緑はてんてん $\delta.2.4 \mu$ C 10.05μ C 0.05μ	
	の牌級も員里阵有期 $(i > 0)$ にのいて取入班及になる。 また、コア 収縮 期 $(i < 0)$	
		16
0.7		10
2.1	輝緑し ($\Gamma(Ly\alpha)/\Gamma(L\alpha)$) をが力 個々の実致としてなしたもの。 2 つのモブルが抽が わており が $\dot{M} = 1$ M m^{-1} and $\Delta \alpha = 10$ km/a の提合 が $\dot{M} = 10$ M m^{-1}	
	11 Cのウ、 が $M_* = 1$ M _☉ yr and $\Delta v = 10$ Km/s の场口、 が $M_* = 10$ M _☉ yr and $\Delta u = 200$ km/s の場合である	10
90	and $\Delta v = 500$ km/s の場合しのる。	10
2.0 2.0	Mo2 \cup 150-5 WS \wedge \vee \vee \vee Schleiber et al. (2001)	21
2.9	裡族111の生の超利生漆光の際に主成されるクスト頁里 (Nozawa et al. 2003)。 傾動が爆発した日の毎号	ഫ
0.10		22
2.10	$HDF-N$ 中の $z < 2$ $M_v < -20$ 銀河のつち、円盤銀河と万類されるものの形態 (Keiler a and Versida 2001)	<u>0</u> 4
0 1 1	(Rajisawa and Tamada 2001)	24
2.11		
	$2002)$ 。 UDIVI IIX 部に作り載河形成モデルでは、逐力で里り載河が激減 9 \circ (see also	05
	Kaummann & Charlot 1998).	25

2.13 遠方ライマン・ブレイク銀河 (LBG, filled symbols) およびライマン輝線銀河 (LAE, open circle) の密集度合(相関長, r₀)とダークマター分布に対する銀河分布のバイ アス・パラメター (b) の進化 (Ouchi et al. 2003)。破線はダークマターの密集の強 さを表す。

26

- 2.14 CDM モデルを用いて推測された、高赤方偏移銀河を持つダークハローがz = 0 で なす質量関数 (Ouchi et al. 2003)。丸はライマン・ブレイク銀河 (LBG)、三角は 近赤外線で選んだ赤い銀河 (FIRES)、星印は遠赤外線で選んだ銀河 (SCUBA) を意 味する。また、丸、三角、星印につけられた青、黒、赤の3つの色は これらの銀 河が検出された赤方偏移を意味し、それぞれ $z \sim 3$, $z \sim 4$, $z \sim 5$ である。 太線は z = 4 にあるライマン・ブレイク銀河の質量関数の最尤関数を進化させたもの。こ こでは銀河の合体は考慮しない。点線は2dFGRS 銀河の質量関数 (van den Boush et al. 2003)。細線はモデルが予言する z = 0 の全ダークハローの質量関数。 ... 29
- 2.16 COBE (、 、), IRTS () によって観測された近赤外宇宙背景放射。
 は

 HST による可視域での背景放射。
 、実線は銀河を重ね合わせた光を示す。
 30
- 2.18 遠赤外・サブミリ波領域での宇宙背景放射。DIRBE/COBE によるデータを塗りつ ぶしたシンボルで、FIRAS/COBE のデータを実線・破線で示した。 は SCUBA で観測された銀河による背景放射への寄与を、 は ISO の観測にもとづくモデル による予想値、 は Spitzer が観測した銀河を重ね合わせて得られたデータを示す。 32
- 2.20 空間数密度の赤方偏移パラメータ依存性。上から:低光度 AGN、中光度 AGN、大 光度 AGN (図中に硬 X 線光度の範囲を示す)。線はベストフィットモデル。 ... 33

- 2.22 2.8-4.1 µm スペクトル中の、3.3 µmPAH 放射、及び、ダスト吸収フィーチャーを 用いた、ULIRGsのエネルギー源の分光診断法 (Imanishi & Dudley 2000; Imanishi & Maloney 2003)。(a): スターバーストに支配された ULIRG(Arp 220) のスペクト ル。定義上、等価幅はスターバーストのダスト吸収によらないため、スターバース トに支配された銀河では、等価幅の大きな (EW ~ 100 nm)3.3 μmPAH 放射が、常 に観測される。(b): スターバーストが検出されないほど弱く、埋もれた AGN に支 配された ULIRG (IRAS 08572+3915)。3.3µm PAH 放射は検出されず、3.4 µm に 強い(裸の)炭素系ダストによる吸収が観測される。(c):エネルギー的に重要な、埋 もれた AGN と、検出できるレベルのスターバーストを持つ ULIRG(UGC 5101)。 3.3 µm PAH 放射の等価幅と、赤外線光度に対する 3.3 µm PAH 放射光度比は、ス ターバーストに支配された銀河に比べて、有意に小さい。この ULIRG の場合、ダ ストのかなりは、アイスに覆われていることがわかり、実線の下の、裸のダストに よる 3.4 μ m 吸収に加えて、破線の下の、アイスに覆われたダストによる 3.1 μ m 吸 収が検出されている。これらの吸収線の光学的厚さの和は、3-4 μm 連続光放射領 域までのダストの柱密度を反映する。この天体の場合、3-4 µm スペクトルに基付 く、吸収補正後の AGN の光度は、赤外線光度に匹敵するほど大きいことが確認さ れている。 2.23 (左): ダストに比べて中心集中したエネルギー源である、埋もれた AGN の周囲のダ
- ストの強い温度勾配の様子。内側のダストほど高温で、外側に行くほど低温になる。 3-4µmの連続光は、一番内側の、ダスト昇華温度に近い、温度にして 800-1000K の高温ダストが支配するため、波長 3-4 μmのデータを用いて求めたダスト吸収量 $A_V(3\mu\mathrm{m})$ は、一番内側までの値を反映する。それに対し、例えば、波長 $10\mu\mathrm{m}$ の データを用いて求めた、 $10\mu\mathrm{m}$ 連続光放射領域までのダスト吸収量 $A_V(10\mu\mathrm{m})$ は、 やや外側の300Kダストまでの値を反映する。波長20µmのデータを用いて求めた、 さらに外側の 150K ダストまでの吸収量 $A_V(20\mu m)$ は、さらに小さくなる。従って、 埋もれた AGN では、 $A_V(3\mu m) > A_V(10\mu m) > A_V(20\mu m)$ の関係が成立する。(右): |実際の ULIRG(IRAS08572+3915) への適用例。波長 3-4µm のスペクトル中のダス ト吸収フィーチャーの光学的厚さ τ_3 から、 $A_V(3\mu m)$ の値が求まる。 $A_V(10\mu m)$ 、 及び、 $A_V(20\mu m)$ の値は、シリケイト系ダストによる、波長 9.7 μm 、及び、18 μm の吸収フィーチャーの光学的厚さ ($\tau_{9.7}$ 、及び、 τ_{18})から、それぞれ見積もられる。 本天体の場合、 $A_V(3\mu m) \sim 120 \text{ mag}, A_V(10\mu m) \sim 50 \text{ mag}, \text{ and } A_V(20\mu m) < 20$ mag と見積もられ、埋もれた AGN の場合に期待される、 $A_V(3\mu m) > A_V(10\mu m)$ $>A_V(20\mu{
 m m})$ の関係が、はっきりと確認された。一方、代表的なスターバースト銀 河である M82 において、 $A_V(3\mu\mathrm{m}) \sim A_V(10\mu\mathrm{m}) \sim A_V(20\mu\mathrm{m})$ の関係も確認され 37392.25 Launhardt et al (2002) が、COBE の波長 4.9µ mデータとそのスムージング (上 図)から deconvolve して求めた、銀河中心部数百 pc の赤外線放射のピーク(下図)。 これよりも大きなスケールとは異なり、若い星が数多く含まれると考えられるが、 長波長では未だ空間分解されていない。 452.26 近傍 (距離 4.1Mpc) の矮小銀河 NGC5253 の HST の画像 (Alonso-Herrero et al. 2004 ApJ 612 222)。いくつかの明るいコンパクトな天体が SSC。 492.27 オリオン・トラペジウムクラスターの近赤外線 (JHK) 画像 (Muench et al. 2002 50

36

2.28	オリオン・トラペジウムクラスターの IMF (Muench et al. 2002 より)。	51
2.29	1.3 mm での Orion KL の干渉系マップ。gray scale は連続波、コントアは分子輝線。	
	星印は radio source I および SiO メーザーの位置を示す。(van Dishoeck & Blake	
	1998)	52
2.30	Spitzer Space Telescope (左) および JCMT (右) によるフォーマルハウトの撮像	
	結果と、 ${ m SPICA}~60\mu{ m m}$ の空間分解能。左図の左上にある白丸が、 ${ m SPICA}~60\mu{ m m}$ の	
	空間分解能をあらわす。	56
2.31	: $eta { m Pic}$ の放射スペクトルモデルと、SPICAの検出限界。 $eta { m Pic}$ が $20 { m pc}$ 、 $400 { m pc}$ 、 $4 { m kpc}$	
	にある時の強度を示した。 $eta{ m Pic}$ の放射スペクトルは、従来の観測値から求めたもの	
	である。20pcの距離にある場合のみ、光球からの放射スペクトルをあわせて示した。	57
2.32	実験室で測定したケイ酸塩鉱物のスペクトル。 $\operatorname{Mg-pure}$ なケイ酸塩鉱物 (上) に、 Fe	
	が含まれていくとピーク波長が長波長側にシフトしていくことが分かる。・・・・・	58
2.33	10pc においた太陽系のスペクトルモデル (Traub & Jucks 2002)。太陽、木星、地	
	球、金星、火星、黄道光が示されている。これらの天体のスペクトルは太陽からの	
	反射光と惑星自らの熱放射の2成分から成る。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
2.34	惑星(質量 M が $13M_J$ 以下)、褐色矮星($13M_J < M \leq 73M_J$)、恒星($M >$	
	$_{73M_J}$)の光度進化。低質量天体は、若いほど高光度であり、また、恒星に対する	
	コントラスト比は小さい。	60
2.35	若い褐色矮星・準褐色矮星のスペクトルとミッションの感度。SPICA はR=1000	
	で観測したときの連続光感度(Natta & Testi 2001 より)。	62
2.36	赤色巨星からの質量放出と宇宙の中でのその位置付け...........	64
2.37	質量放出星の研究の発展....................................	65
2.38	左は実験室での各岩石小天体構成鉱物野分光データである。左図一番上に水の吸収、	
	左図上4つは無水鉱物、左図下2つが含水鉱物である。このように含水鉱物では鉱	
	物に含まれる水分子の影響で、 $2.0~\mu{ m m}$ や $2.8~\mu{ m m}$ 付近、それより長波長側に顕著な	
	吸収が現れる (Emery et al. 2003)。しかし、その波長領域は地球大気の不透明な	
	部分に重なっており、地上からの観測は困難を極める。・・・・・・・・・・・・	75
2.39	$3.5\mathrm{m}$ 径の冷却望遠鏡、検出限界は 5σ 、熱モデルは $\mathrm{ILM}(\mathrm{FRM})$ 、 1 時間積分を仮定。	
	ここで SPICA についてのプロットは、SPICA の旧称である HII/LII のそれが対	
	応する。....................................	77
2.40	太陽系小天体のスペクトルエネルギー分布 (SED)	77
2.41	小天体の大きさとアルベドの決定方法..................	78
2.42	ISO によって検出された彗星からのガス成分 (1)	79
2.43	ISO によって検出された彗星からのガス成分 (2)	80
2.44	彗星コマ中のメタン分子の高分散分光観測。上段は地上で観測したスペクトルで、	
	ガスによる輝線と塵による太陽散乱光を含んでいる。下段は彗星分子による輝線の	
	み取り出したもの。横軸は波数(/cm)、縦軸はフラックスである。地上観測では、	
	地球大気による吸収が邪魔をしており、分子輝線の観測は困難である。彗星と地球	
	との相対運動の結果、彗星メタン分子の輝線が、地球大気中のメタン分子吸収線か	
	らわずかに外れているため、観測できている(しかし、一部の輝線は地球大気中の	
	H_2O の吸収によって邪魔されてしまっている)。 \dots \dots \dots \dots \dots	81
2.45	ISO で得られた HD 100546 (Young Star) のスペクトル (Malfait et al. 1998)	84
3.1	天体からの信号強度 (点線) と望遠鏡からの熱放射 (実線)の比較。	88

3.2	波長 200µm における、天体からの信号強度 (cirrus, 銀河内の塵の放射) と望遠鏡か	
	らの熱放射 (実線) の比較。望遠鏡からの熱放射を天体からの信号以下に抑えるた	
	めには、望遠鏡を数K以下に冷却しなければならないことがわかる。	89
3.3	遠赤外線の point source に対する感度。 source confusion が支配的なパラメータで	
	ある場合を仮定。口径の関数として示す (Dole et al. 2004)。	89
3.4	赤外線背景放射が銀河の重ね合わせであるとして、どれくらいの割合が観測的に分	
-	解できるかを、望遠鏡の口径の関数として示したもの (Dole et al. 2004)。遠赤外	
	線の代表的波長である 70 µm において、赤外線背景放射を 90 %以上分解しようと	
	すると、3m以上の口径の望遠鏡が必要である。	90
35	大陽近傍の主系列星の数、ビッパルコスカタログから算出、統計的に有音な数(数	50
0.0	十個以上)のサンプルを観測するためには 10pc 程度までの星の観測を行なわなけ	
	h ばならない。10pc の距離に星の周り 10AU を公転している系外惑星を波長 5 μ m	
		91
		51
4.1	SPICA 衛星外観図	95
4.2	H-IIA ロケットフェアリング内の SPICA	95
4.3	打ち上げ時コンフィギュレーション................................	98
4.4	軌道上コンフィギュレーション	99
4.5	バス部機器配置	100
4.6	SPICA システムブロック図	101
4.7	SPICA 電源系系統図	102
5.1	焦点面観測装置とりつけ空間の外形およびその衛星における位置: 焦点面観測装置	
	用は、光字ベンチ上の直径 2500 mm、局さ 500mm の空間に納める必要がある。円	
	柱型のとりつけ空間の軸は、望遠鏡の光軸と一致している。	108
5.2	焦点面の視野分配例:矢印は折曲げ鏡による光束の引出し方向を表す。コロナグラ	
	フ観測装置は他の装置より高い波面精度を要求するが、視野が狭いため、焦点面の	
		109
5.3	SPICA 焦点面観測装置における補償光学:コロナグラフ観測装置と中間赤外観測	
	装置は一体化する可能性があるが、ここでは独立した観測装置とした場合について	
	示す。	110
5.4	Image Slicer 構成図	117
5.5	点光源をイメージスライサーで観測するときにおきる回折の効果	118
5.6	点光源をイメージスライサーで観測するときにおきる回折の効果	119
5.7	点源像とスリットの位置関係を dx (0 だと中心、1 だとビークがスリット端)とし、	
	スリット通過後のビームを幾何光学的サイズの1×p倍の矩形領域まで利用する場	
	合に再結像した像のスリット幅に相当する部分に含まれるエネルキーを横軸をpに	
	し、縦軸を最初にスリットに入射するエネルギーに対する比	119
5.8		121
5.9		124
5.10	SPICA に搭載した場合の中間赤外フーリエ分光器の予想感度 (S/N=10, 50000 秒	
	積分)。太線が背景放射(黄道光)による限界を表し、波線が検出器による限界を	
	示す。波長範囲は、検出器 (Si:As とSi:Sb)を想定して分け、一部重複するように	
		125
5.11	Goddard Space Flight Centre で開発中の MSA の写真。	128

5.12	GSFC-MSA で書いた"ESA"の文字列	129
5.13	東大天文センター/生産研で開発中のシャッターアレイ1素子分の簡易図.....	129
5.14	冷却振動鏡による像補正システム概要.............................	131
5.15	冷却振動鏡システム機械設計例:鏡面後ろから見た図 (左側) および鏡面前から見	
	た図 (右)。	133
5.16	冷却振動鏡を固定ばねで引っ張った場合の鏡面精度解析。この例では最大変位は	
	0.15µm 程度であり全く問題にならない。	134
5.17	Thick multi-spectral CVD ZnS (Cleartran) の中間赤外帯での透過率。厚さ3.7mm。	
	温度は 300K と 50K (Hawkins et al. 2004)。	137
5.18	同じく ZnSe の中間赤外帯での透過率。	137
5.19	同じく CdTe の中間赤外帯での透過率。	138
5.20	DRS 256×256 Si:As BIB(太線) および 256×256 Si:Sb BIB(点線)の DQE(Detective	
	Quantum Efficiency)。DRS 社測定。SOFIA FORCAST チーム Web サイトより。	
	両検出器は anti-reflection(A/R) コート処理により、量子効率が向上しフリンジ強	
	度が減少することが報告されている (Heter et al. 1998, SPIE 3354, 109)。	138
5.21	試験デュアーにインストールされた JWST 用 Raytheon 1024x1024 Si:As BIB 検出	
	器 (Ennico et al. 2003 SPIE Vol. 4850, 890)。	140
5.22	Si:As/Si:P BIB 検出器の量子効率 (計算値) (Hogue et al. 2003 SPIE Vol. 4850,	
	880)°	140
5.23	太陽および太陽系の惑星を、遠方から観測した場合のそれぞれのスペクトル (Burke	
	et al. 1992)	143
5.24	Lyot 型コロナグラフの原理を示す模式図 (Murakawa et al. 2004)	147
5.25	4 分割位相マスクによるコロナグラフの原理を示す模式図 (Rouran et al. 2000)	147
5.26	様々な瞳マスク (上段) とそれによる PSF(下段)。(Jacquinot & Roizen-Dossier 1964,	
	Spergel 2001, Niesenson & Papaliolios 2001。図は Guyon et al.2003 より), \ldots	148
5.27	副鏡、スパイダーの遮蔽を回避した瞳マスク (左) と、それによる PSF(左からそれ	
	ぞれ実測、シミュレーションによるもの)。(Debes et al.(2000)	148
5.28	従来型の望遠鏡 (上段左) および PIAA (上段右) による結像の特徴。下段は PIAA	
	によって生成される PSF の例。	149
5.29	コロナグラフ観測装置の構成。	152
5.30	波面誤差によるコロナグラフ性能の劣化の計算例。ここでは Lyot 型のコロナグラ	
	フについて、焦点面に半径 $r = 3\lambda/D$ のマスク、第2 瞳面に中心から 0.8 r までを	
	完全に透過し、0.8 < r < 1.0 にかけて直線的に透過率が 0 まで減少するアボダ	
	イザーを想定している。右上に示したシンボルは、上から順に、1) 焦点面マスク、	
	アボダイザーなし、波面誤差なし、2) 焦点面マスクあり、アボダイザーなし、波	
	面誤差なし、3) 焦点面マスク、アボダイザーあり、波面誤差なし、の場合に対応す	
	る。1) および 2) フロットの凹凸が、回折リングに相当する。power spectrum(-2	
	乗則)で特徴つけられる波面誤差を導入し、RMS が 0.3, 0.6, 1.2 μm とした場合	
	の結像性能を 4) ~ 6) に示す。SPICA 望遠鏡における波面誤差の仕様は $0.35 \mu m$	
	(RMS) なので、 可変形鏡が有効であることがわかる。	154
5.31	米国 Xinetics 社で開発中の極低温可変形鏡 (Ealey et al. 2002)。	154
5.32	ASTRO-F/FIS 用検出器:(左) モノリシック Ge:Ga 素子と極低温読み出し回路を In バン	
	フで接合した短波長検出器。(右)5 素子のブレートを15 段スタックしたコンパクトな圧縮	
	型 Ge:Ga 検出器。(情報通信研究機構/宇宙科学研究所/東京大学)	158

5.33	ASTRO-F/FIS の点源に対する観測限界:各測光バンドの Z 型のラインの上側が全天サー	
	ベイでの検出限界に対応し、下側のラインが 4" / sec のスロースキャンでの検出限界に対応	
	する。スロースキャンのピクセルあたりの積分時間は約10秒に相当する。	159
5.34	SPICA 望遠鏡での銀河によるコンフュージョンの影響	160
5.35	光導波路型 Ge:Ga 検出器	163
5.36	BIB 検出器のエネルギーバンド構造...............................	163
5.37	Ga:As 検出器の波長感度特性	164
5.38	超電導 フォトン検出器の原理	165
5.39	超電導 TES ボロメータと SQUID 読みだし	166
5.40	量子ドットフォトカウンタの原理 (a)、および得られた遠赤外フォトンカウント信号	167
5.41	遠赤外分光器の光学系、望遠鏡/光学ベンチとの位置関係	170
5.42	SPICA 搭載遠赤外サブミリ波分光装置のスペクトル線検出感度と他のスペース・地	
	上の分光装置のそれとの比較。スペースで冷却望遠鏡を用いて観測する SPICA で	
	は、圧倒的に高い感度が得られる。..............................	173
5.43	BLISS に用いられる検出器に必要な性能(縦軸は、雑音等価光量 $\left[\operatorname{W}\operatorname{Hz}^{-1/2} ight]$)。暖	
	かい望遠鏡である Herschel(緑線)に比べて超低背景放射環境の SPICA の場合、	
	特に分光分解能 $R{=}1000$ の場合に、極めて高い検出器性能が要求される。	174
5.44	SPIDER web 型の bolometer	175
5.45	TES 型 bolometer で達成された NEP	175
5.46	SPICA 搭載遠赤外サブミリ波分光装置 (BLISS)の光学系案(1)。回折格子を使用	
	するコンセプトに2種類あるが、ここではWaveguide(導波路)タイプ光学系の場	
	合のデザインを示す。図中の円柱は、焦点面観測装置の取り付けスペースを表して	
	おり、そのサイズは 2500 mm, 高さ 500 mm である。	176
5.47	SPICA 搭載遠赤外サブミリ波分光装置 (BLISS) の光学系案(2)。フーリエ分光	
	案。長波長帯(下段)用と短波長帯用それぞれ独立な分光装置である。図中の円柱	
	は、焦点面観測装置の取り付けスペースを表しており、そのサイズは 2500 mm,	
	高さ 500 mm である。	177
61	な後サイブで主した CDICA 胡清徳の収美。大娘は後面漆曲に F 2 収美で、知測法	
0.1	和家りイスてなりた SITOA 主途鏡の状を。	
	直を取及隊面にの、ここで開止する。両い天縁は非常状空を、また破縁は放及 5μ m での同折限男を志す	189
69		182
0.2 6 3		100
0.0	の方に、後日初行の以合。生母とに致し、日母の初行の一線住が八日、以合と行うです。	185
64	C/SiC 複合材 160 mm 球面鏡(筆2 作目・3 segment 接合)とその低温変形を干渉	100
0.1		186
6.5	ASTRO-F SiC160 mm 試作球面鏡(第3作目)の 常温から6 K までの低温面検	100
0.0		186
66	ASTRO-F フライト望遠鏡	187
6.7	Opteon で研磨中の Herschel 望遠鏡 3.5m SiC 主鏡	188
6.8	Sic SPICA 望遠鏡設計外観図	189
6.9	主鏡およびバイポッドの設計	190
6.10	副鏡支持構造と光学ベンチ	191
6.11		192
6 1 2	燃料: 2017 121 121 121 121 121 121 121 121 121 1	194
0.14		101

 $\mathbf{472}$

6.13	Opteon 社研磨設備 19	94
6.14	Hartmann 試験 Configuration	96
6.15	ペンタプリズム試験の原理19	96
6.16	研磨中の OG 確認	97
6.17	Hindle - Simpson 法による試験 configuration	98
6.18	ペンタプリズムを用いた主鏡 + 副鏡の試験原理	98
6.19	組み立て試験の configuration 19	99
6.20	ロケットフェアリン グ内の C/SiC SPICA 望遠鏡概念図	01
6.21	C/SiC SPICA 望遠鏡概念図 20	01
6.22	C/SiC SPICA 望遠鏡システム概略図	02
6.23	C/SiC 主鏡コンポーネント斜視図(裏より)20	03
6.24	C/SiC 望遠鏡システムの波面誤差	04
6.25	製作中の 700mm BBM 鏡。裏面 (固定点側:左) および表面 (鏡面側:右)。 20	05
6.26	反応焼結型 SiC の CTE 温度依存性 20)6
6.27	NT-SiC の表面	07
6.28	NT-SiC 研磨後の表面粗さ 20	07
6.29	NT-SiC 400 mm 軽量化平面鏡	08
6.30	NT-SiC 650 mm 軽量化試作鏡 20	08
6.31	JAXA 宇宙科学研究本部の液体ヘリウム冷却光学試験チャンバー)9
6.32	ASTRO-F 望遠鏡の低温における光学検査 configuration	10
6.33	$ m JAXA$ 宇宙利用推進本部の $6~{ m m}\phi$ 放射計スペースチャンバー $ m \dots$ $ m m$ $ m m$ $ m m$ 21	11
6.34	50%重複による2次元縫い合わせマップ21	12
6.35	SPICA 主鏡単体の冷却試験の測定 configuration (案)	14
$\begin{array}{c} 6.35\\ 6.36\end{array}$	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21	14 15
6.35 6.36 7.1	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト: 従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ	14 15
6.35 6.36 7.1	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 31 オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械	14 15
6.35 6.36 7.1	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタッ	14 15
6.35 6.36 7.1	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に	14 15
6.35 6.36 7.1	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械 31 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に 22 なる。 22	14 15 20
6.356.367.17.2	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に なる。 22 衛星バス部との機械的インタフェース点 22	14 15 20 22
 6.35 6.36 7.1 7.2 7.3 	SPICA 主鏡単体の冷却試験の測定 configuration(案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration(案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械 32 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に 22 衛星バス部との機械的インタフェース点 22 SPICA ミッション部の全体構成 22	14 15 20 22 25
 6.35 6.36 7.1 7.2 7.3 7.4 	SPICA 主鏡単体の冷却試験の測定 configuration(案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration(案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星(外観図) 22 SPICA 衛星(外観図) 22	14 15 20 22 25 26
 6.35 6.36 7.1 7.2 7.3 7.4 7.5 	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星 (外観図) 22 軌道上での熱経路概念図 22	14 15 20 22 25 26 28
 6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星 (外観図) 22 spiCA 衛星 (外観図) 22 転道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合(Front SAP-I型) 22	14 15 20 22 25 26 28 29
 6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ 21 オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタッ トを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星 (外観図) 22 軌道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合 (Front SAP-I 型) 22 SAP をサンシールド外側で縦方向に展開した場合 (Front SAP-I 型) 22 SAP をサンシールド外側で縦方向に展開した場合 (Front SAP-I 型) 22	14 15 20 22 25 26 28 29 29
 6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA 切冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライオスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型になる。 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星(外観図) 22 軌道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合(Front SAP-I型) 22 モデル全体形状(1/4) 23	14 15 20 22 25 26 28 29 29 32
 6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA 切冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ オスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタッ トを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星(外観図) 22 sh道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合(Front SAP-H型) 22 SAP をサンシールド外側で縦方向に展開した場合(Front SAP-H型) 22 モデル全体形状(1/4) 23 モデル全体形状(2/4) 24	14 15 20 22 25 26 28 29 29 32 33
6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライオスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型になる。 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星 (外観図) 22 動道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合 (Front SAP-H型) 22 SAP をサンシールド外側で縦方向に展開した場合 (Front SAP-H型) 22 モデル全体形状 (1/4) 23 モデル全体形状 (3/4) 24	14 15 20 22 25 26 28 29 29 32 33 33
6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライオスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型になる。 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星(外観図) 22 SPICA 衛星(外観図) 22 就道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合(Front SAP-I型) 22 SAP をサンシールド外側で縦方向に展開した場合(Front SAP-H型) 22 モデル全体形状(1/4) 23 モデル全体形状(3/4) 23 モデル全体形状(4/4) 24	14 15 20 22 25 26 28 29 29 32 33 33 33
$\begin{array}{c} 6.35\\ 6.36\\ 7.1\\ 7.2\\ 7.3\\ 7.4\\ 7.5\\ 7.6\\ 7.7\\ 7.8\\ 7.9\\ 7.10\\ 7.11\\ 7.12\\ \end{array}$	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト: 従来の冷却望遠鏡衛星では、冷媒タンクおよびクライオスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型になる。 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星 (外観図) 22 軌道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合 (Front SAP-I型) 22 モデル全体形状 (1/4) 23 モデル全体形状 (2/4) 23 モデル全体形状 (4/4) 23 熱フロー図 24	14 15 20 22 25 26 28 29 32 33 33 37 40
6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ オスタットが、大きな重量、体積を占めていた (左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする (冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星 (外観図) 22 軌道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合 (Front SAP-I型) 22 SAP をサンシールド外側で縦方向に展開した場合 (Front SAP-H型) 22 モデル全体形状 (1/4) 23 モデル全体形状 (3/4) 23 モデル全体形状 (4/4) 23 熱フロー図 24 非定常熱解析結果 (1/2) 24	14 15 20 22 25 26 28 29 32 33 33 37 40 41
6.35 6.36 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライオスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタットを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型になる。 22 なる。 22 衛星バス部との機械的インタフェース点 22 SPICA 衛星(外観図) 22 軌道上での熱経路概念図 22 SAP をサンシールド外側で横方向に展開した場合(Front SAP-I型) 22 SAP をサンシールド外側で縦方向に展開した場合(Front SAP-H型) 22 モデル全体形状(1/4) 23 モデル全体形状(3/4) 23 モデル全体形状(4/4) 24 熱フロー図 24 非定常熱解析結果(1/2) 24 非定常熱解析結果(2/2): 30 K 以下詳細 24	14 15 20 22 25 26 28 29 29 29 29 29 29 29 33 33 37 40 41 42
$\begin{array}{c} 6.35\\ 6.36\\ 7.1\\ 7.2\\ 7.3\\ 7.4\\ 7.5\\ 7.6\\ 7.7\\ 7.8\\ 7.9\\ 7.10\\ 7.11\\ 7.12\\ 7.13\\ 7.14\\ 7.15\end{array}$	SPICA 主鏡単体の冷却試験の測定 configuration (案) 21 SPICA 望遠鏡システムの冷却試験の測定 configuration (案) 21 SPICA の冷却コンセプト:従来の冷却望遠鏡衛星では、冷媒タンクおよびクライ オスタットが、大きな重量、体積を占めていた(左)。SPICA では放射冷却、機械 式冷凍機の利用、 warm launch を実現することで、冷媒タンク、クライオスタッ トを不要にする(冷却方式の革命)。その結果、搭載可能な望遠鏡は画期的に大型に なる。 22 なる。 22 衛星パス部との機械的インタフェース点 22 SPICA 衛星(外観図) 22 SPICA 衛星(外観図) 22 SAP をサンシールド外側で横方向に展開した場合(Front SAP-I型) 22 SAP をサンシールド外側で縦方向に展開した場合(Front SAP-H型) 22 モデル全体形状(1/4) 23 モデル全体形状(3/4) 23 モデル全体形状(4/4) 24 非定常熱解析結果(1/2) 24 非定常熱解析結果(1/2): 30 K 以下詳細 24 非定常熱解析結果(1/2): 30 K 以下詳細 24 非定常熱解析結果(1/2): 30 K 以下詳細 24	14 15 20 22 25 26 28 29 29 33 33 37 40 41 42 42

7.17	非定常熱解析結果 (1/2): 4K 級冷凍機 2 式搭載	243
7.18	非定常熱解析結果 (2/2): 4K 級冷凍機 2 式搭載、30 K 以下詳細	244
7.19	従来案と定常到達時間短縮案の比較(冷凍機温度)2	244
7.20	構造数学モデル (全体)	246
7.21	構造数学モデル (支持構造トラスと IRT+FPI)2	247
7.22	構造数学モデル (サンシールド)2	248
7.23	構造数学モデル (シールド#3)	249
7.24	構造数学モデル (バッフル)2	250
7.25	構造数学モデル (鏡筒) 2	251
7.26	モード図(X方向1次) 2	254
7.27	モード図(Y方向1次) 2	255
7.28	モード図(Z方向1次)2	256
7.29	鏡筒およびバッフル部の形状(ケース1:鏡筒 / バッフル分離) 2	259
7.30	鏡筒およびバッフル部の形状(ケース2:鏡筒 / バッフル一体) 2	260
7.31	熱フロー図:鏡筒 / バッフル一体の場合	262
7.32	2 段スターリング冷凍機 + JT 回路冷凍機 フロー図	265
7.33	1K 級冷凍機試作品(BBM)2	266
7.34	2 段スターリング冷凍機の構造図 2	268
7.35	1K 級用 JT 圧縮機試作品(BBM)の構造図(2K 級:TBD)2	269
7.36	4K 級用 JT 圧縮機の構造図	269
7.37	冷凍機ドライバとその周辺機器2	272
7.38	冷凍機ドライバのコンポーネント内部構成2	273
7.39	冷凍機 / ラジエータのレイアウト検討例2	279
7.40	冷却機発熱量とラジエータ温度の相関2	280
7.41	熱負荷 / 動作温度 vs. ドライ重量	282
Q 1	FDS 機能ブロック図	0.4
0.1	DL 0 10101101111011011011011111111111111	594 007
0.2 8 2	- 女小电/JCンマンドRXXVEAIA(シアノド 1 RHにり取入処理电/J= 300W の場合)2 - 1 船当たけ 0 M (450W 相当)で会計 5 船の SUNTの発熱プロファイル。	908 191
0.0 8 /	- 1 f2 1 0 3 (450 W 相当) てロロロ X 0 5111 1 の光烈ノロノアイル・・・・・ 2 - 1 船当たけ 0 4 (450 W 相当) で動作由のシャントタップ乃びバフ雪圧のリップリ 泣びの	,90 190
0.4 8 5		.90 190
0.J 8.6		10⊿ 202
0.0 8 7		104 102
8.8		204 202
0.0	ハロア4Am71223123123123123123123123123123123123123	103 103
0.9 8 10	$(\mathbf{V}_{\mathbf{V}}, \mathbf{K}, \mathbf{K}_{\mathbf{U}}, \mathbf{K}_{$	103 204
8 11	$ T_{M}$ (17) (17) (17) (17) (17) (17) (17) (17)	04 205
0.11 Q 19		200
0.12 8 19		202
0.10	ヘノノョノノ ノムビホ、「「&し四日ホモ共なる内枢奴し独立に開成する場合」 このションデータ伝送系 TT&C通信系を共通に構成し、さらにTT&C通信系	000
0.14	、ノノコノノ ノムムボ、「「なく逆向示を共通に開成し、こうに」」なく進信が なくパンドで構成する場合	208
8 15		100
8 16		109 10
8 17		, 10 11
8 18		11 19
0.10		14

8.19	本節における記述対象範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	329
8.20	姿勢軌道制御系のハードウェア構成................................	331
8.21	内部擾乱解析のブロック図....................................	338
8.22	許容擾乱量と実際の擾乱との対比	339
8.23	姿勢制御系 / 指向制御系と指向精度の関係	341
8.24	ハイブリッド制御系の性能解析モデル..............................	344
8.25	姿勢角度ステップ変化に対する応答(larcsecのステップ的姿勢角変動に対する応答)	346
8.26	衛星本体にホイール擾乱 (周波数 31Hz, 振幅 0.1Nm) を加えた場合の時間応答	346
8.27	解析に用いた冷凍機擾乱 (JT/ST)	347
8.28	。 冷凍機擾乱による影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	348
8.29	擾乱管理のアーキテクチャ(=周波数に基づく分類)	353
8.30	二次推進系のハードウェア構成	362
8.31	構体系外観図	369
8.32	構体系構成	370
8.33	1 次振動数解析結果 (1)	371
8.34	1 次振動数解析結果 (2)	371
8.35	。 高度解析結果(トラス荷重)	372
8.36	- 高度解析結果(-Zパネル主応力)	373
8.37	PAF2360S インタフェース荷重解析結果	373
8.38	バス部基本形状	375
8.39	熱制御ハードウエアの配置概念	378
8.40	冷凍機ドライバの熱制御	380
8.41	ヒートパイプ埋込パネルの事例	380
8.42	バス部とミッション部との断熱設計の概念	381
9.1	Sequence of Events	385
10 1	SPICA 冷却系試験の構成図	390
10.1	6日の前後は赤山線の海辺四 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	000
10.2	上の動作と同様に、冷凍機による冷却シミュレーションも可能とする。	391
		001
11.1	フェーズA:冷却システム関連の開発スケジュール	400
11.2	フェーズ A : 望遠鏡開発スケジュール	402
11.3	フェーズA:姿勢/指向系制御システムの開発、実証関連のスケジュール	405
10.1		100
12.1	開先マスタースクシュール	408
12.2	$\mathcal{I} = \mathcal{I} \mathbf{A} $	409
12.3	$\mathbf{J}\mathbf{I} = \mathbf{A}\mathbf{B}$	410
12.4	$\mathcal{I} = \mathcal{I} \mathcal{I}$	411
12.5		412
12.6	光安糸こC切人ソンユール緑衣	413
15.1	SPICA 開発体制:JAXA (宇宙科学研究本部、総合技術研究本部など)、国立天文	
-	台、大学および国内外の研究機関が協力して開発をすすめる。	426
B.1	衛星コンフィギュレーション $(1/2)$	444

B.2	衛星コンフィギュレーション (2/2) - 衛星-Z 面から見た図 - 矢印は SAP 端とサ	
	ンシールドを結ぶ線。 SAP 裏面はミッション部シールド#3~鏡筒を見ていない。	445
C.1	背景放射の強度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	450

表目次

1.1	SPICA Mission 仕様 (案)
$2.1 \\ 2.2$	若い星からのアウトフローの概要 43 SPICA の撮像装置の小惑星の予想検出限界 76
$2.3 \\ 2.4$	氷微小天体のアルベドの多様性
	(不確かな結果も含む) 79
3.1	科学的目的と達成度。望遠鏡の口径の関数として示す。
4.1	SPICA 主要諸元
4.2	SPICA データ発生レート (Mbps) 97
4.3	SPICA 質量電力配分表
4.4	電力配分 / 運用モード別消費電力表
5.1	現段階での各観測装置の仕様107
5.2	焦点面観測装置全体への制約108
5.3	20-50 μm 帯を中心とした分光観測要求 112
5.4	5-50 µm 帯に存在する主なガススペクトル線
5.5	$0.7 ext{}5~\mu\mathrm{m}$ 帯に存在する主なガススペクトル線 $(z=6$ までで、赤方偏移したスペク
	トル線が 5-50 μm の範囲に入ってくるもののうち、Table 5.4 に含まれないもの) . 114
5.6	$5-50 \mu m$ 帯に存在する主なダストフィーチャー
5.7	SPICA-MIR カメラの諸元
5.8	スリット幅に関連するパラメーターの組み合わせ
5.9	冷却振動鏡システムへの要求仕様132
5.10	試作中の冷却振動鏡のおもな仕様133
5.11	N バンド 'Silicate Set' フィルター一覧 135
5.12	Filter Consortium で開発されたフィルターー
5.13	代表的な半導体赤外線検出素子。 $\mathrm{E}:$ エネルギーギャップ。 $\lambda_c:$ カットオフ波長。 $\mathrm{T}:$
	典型的な駆動温度。
5.14	近年に開発された代表的な中間赤外線アレイ。
5.15	開発中の中間赤外線アレイ。参考文献: (1)Mason et al. 2003 SPIE Vol. 4857, 183
	(2)Ennico et al. 2003 SPIE Vol. 4857, 155 (3)Ennico et al. 2003 SPIE Vol. 4850,
	890 (4)Hogue et al. 2003 SPIE Vol. 4850, 880
5.16	中間赤外線観測装置に関連する技術の成熟度
5.17	コロナグラフ観測装置のサイエンスターゲットと、それらの観測に必要な性能 145
5.18	様々な方式のコロナグラフの比較151
5.19	コロナグラフ観測装置に必要な各技術の成熟度

5.20	検出器の主要諸元
5.21	国内の遠赤外線検出器開発状況
5.22	遠赤外分光器における分光方式の比較表。
5.23	これまでに測定された遠赤外線検出器の感度 171
5.24	遠赤外線観測装置に関連する技術の成熟度
5.25	サブミリ波観測装置に関連する技術の成熟度
6.1	
6.2	
6.3	候補となる鏡材の物性値などの比較。至温での代表的な値を示す。182
6.4	「焼結 SiC の特性
6.5	
6.6	Strehl Ratio 要求值/設計值対比 192
6.7	C/SiC 望遠鏡システムの重量配分
6.8	軽量化鏡面母材材料特性 206
6.9	NT-SiC 650 mm 軽量化試作鏡仕樣
6.10	· 望遠鏡システムに関連する技術の成熟度 · · · · · · · · · · · · · · · · · · ·
6.11	主鏡に関連する技術の成熟度
6.12	副鏡部・その他に関連する技術の成熟度
6.13	試験方法に関連する技術の成熟度 217
7.1	冷却システムの執設計条件 2010 221
7.2	冷却システムの機械設計条件
7.3	望遠鏡の機械特性諸元(SiCの場合)
7.4	ミッション部の構成および質量
7.5	執解析条件 230
7.6	バス構体の執伝導結合係数 230
7.7	放射結合係数 231
7.8	冷凍機発熱量
7.9	4K 級冷凍機の冷却能力
7.10	熱モデル各部詳細 (1/3)
7.11	執モデル各部詳細 (2/3)
7.12	執モデル各部詳細 (3/3)
7.13	A6061 熱伝導率
7.14	低熱伝導型 CFRP 熱伝導率
7.15	マンガニン線執伝導率
7.16	定常執解析結果
7.17	構造解析条件
7.18	構造数学モデル詳細 252
7.19	固有值解析結果
7.20	強度解析結果(トラス引張荷重)
7.21	
7.22	解析条件
7.23	解析结果
7.24	断熱/放射冷却構造の要求仕様
. –	

7.25	機械式冷凍機への要求仕様...................................	264
7.26	各冷凍機の構成、消費電力、質量...................................	267
7.27	現状性能と搭載可能化に向けた開発課題	271
7.28	1K 級ドライバ回路出力性能	275
7.29	2K 級ドライバ回路出力性能	276
7.30	4K 級ドライバ回路出力性能	276
7.31	20K 級ドライバ回路出力性能	277
7.32	冷凍機ドライバ寸法、質量	277
7.33	SPICA 排熱システムの方式比較	283
7.34	ミッション部冷却システムに関連する技術の成熟度	284
8.1		293
8.2		295
8.3		296
8.4		300
8.5	太陽電池パドル系に関連する技術の成熟度	305
8.6	通信系構成(基本案)	309
8.7	オプション案として追加されるSバンドTT&C通信機器	309
8.8	回線検討結果 概要	311
8.9	送信出力電力低下、又はアンテナ利得の低下が生じた場合の処置結果	312
8.10	ミッションデータ伝送系 回線検討表(変調方式:QPSK)	313
8.11	コマンド回線結果概要1	316
8.12	コマンド回線結果概要2	316
8.13	X バンドアップリンク回線(TT&C回線)計算表	317
8.14	X バンドダウンリンク回線(TT&C回線)計算表	318
8.15	通信系に関連する技術の成熟度	320
8.16	SPICA 観測運用と DR/通信系への要求 下:ダウンリンクレートでソート....	325
8.17	SPICA DHS 主要緒元 (1/3)	326
8.18	SPICA DHS 主要緒元 (2/3)	327
8.19	SPICA DHS 主要緒元 (3/3)	328
8.20	信号処理系に関連する技術の成熟度.............................	328
8.21	SPICA の観測要求条件 (姿勢制御系関連項目)	330
8.22	姿勢制御系の要求条件	330
8.23	指向制御系の要求条件	330
8.24	姿勢軌道制御系のコンポーネント一覧..............................	331
8.25	SPICA 姿勢軌道制御系の方式概要...............................	332
8.26	姿勢軌道制御系の主要緒元...................................	335
8.27	姿勢軌道制御系の機能一覧.................................	336
8.28	姿勢制御系の要求条件	336
8.29	SPICA の外乱解析結果	337
8.30	姿勢制御誤差解析結果	343
8.31	指向誤差解析結果....................................	343
8.32	ハイブリッド制御系の方式候補	344
8.33	解析に用いたパラメータ.................................	345

0.25	
0.00	SFICA 安労戦迫前脚ボコノホーネノドの王安機能のよび住能
8.30	恒生ビノリの工安に能 ····································
0.01	<u>E 生 ビ ク 9 の 代 計 配 直 宗 円 7 版 直 宗 門 7 版 直 宗 円 7 版 直 宗 円 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 版 直 宗 門 7 肌 直 宗 門 7 版 直 派 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1</u>
8 30	SPICA 複配自住にのける複配自住対象
0.39	STICA 安勢軌道前脚示に関連する試験計画(制光段階にのける武殿)
0.40	SIICA 安労 机 但 前 脚 示 に 民 圧 9 る 山 歌 山 四 (表 但 权 阳 に の) る 山 歌)
0.41	$SIIOA 女労制造前脚示にのける旧根は唯体力型 \cdots \cdots$
0.42	安労制造町岬ボに閉進9 G1X間の成然度 CDICA 次執動送制御玄/指向制御玄に閉するへ後の西検討項日 250
0.40	SFICA 安労制進制脚系/指門制脚系に関ッるフ後の安快討項日
0.44	SPICA 安勢軌道前脚系にのける今後の開光項日
8.40 9.40	SPICA 二次推進系の連用安水赤計
8.40	SPICA 二次推進系のハートウェア設計安水宗社
8.47	SPICA 八推進系の主要諸元
8.48	人フスタワ1ンンク検討
8.49	SPICA 次推進系人フムグ配直検討
8.50	2 次推進糸に関連9 6技術の成熟度
8.51	SPICA 二次推進糸における今後の要検討項目
8.52	止 弦波振動試験レベル (受入試験レベル)
8.53	音響試験レベル(受入試験レベル)印加時間: 40 秒
8.54	質量特性
8.55	構造様式トレードオフ
8.56	構造系質量
8.57	強度解析結果
8.58	構造に関連する技術の成熟度 374
8.59	バス部搭載機器の寸法と発熱376
8.60	熱制御ハードウエアの構成 378
8.61	熱制御系に関連する技術の成熟度
8.62	発熱量および熱流束
10.1	
10.1	測 e 9 へさ低温物性
10.2	
10.3	
10.4	
10.5	ミッション部試験に関する技術の成熟度
11 1	ミッション部:現段階で TRL 4 以下の要素技術 398
11 2	バス・システム部・現段階で TRL 4 以下の要素技術 398
11.2	フェーズ A・隹占面観測装置関連の開発スケジュール 403
11.0	
12.1	SPICA マスタースケジュール
14.1	
14.2	国産冷凍機の搭載か検討されているミッション422
15.1	SPICA ワーキンググループおよび検討会メンバー 430 430
15.2	韓国グル - プ

15.3	米国 BLISS チーム	132
15.4	ヨーロッパ SPICA コンソーシアム	133
16.1	次世代大型ミッションの比較4	135
16.2	中間・遠赤外線ミッションの系譜4	136
A.1	技術成熟度 (TRL, Technology Readiness Level)	41
B.1	衛星コンフィギュレーショントレードオフ	46
C.1	検出器・光学系パラメータ 4	49

参考文献

- Bachiller, R., & Tafalla, M. 1999, The Origin of Stars and Planetary Systems, eds. C. J. Lada & N. D. Kylafis (Kluwer Academic Publishers), 227
- Baugh, C. M., Benson, A. J., Cole, S., Frenk, C. S., Lacey, C., 2002, astro-ph/0203051
- Becker, R. H. et al. 2001, AJ, 122, 2850
- Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W., & Allamandola, L. J. 2002, Nature, 416, 401
- Bertoldi, F. et al. 2003, A& A, 406, L55
- Bieging, J. H., Cohen, M., & Schwartz, P. R. 1984, ApJ, 282, 699
- Bloom, J. S. et al 2002, ApJ, 572, L45
- Bond, J. R., Carr, B. J. & Hogan, C. J. 1984, ApJ, 277, 445
- Bradford, C.M. et al. 2003, Proc. SPIE, 4850, 1137
- Bullock, J. S., Wechsler, R. H., & Somerville, R. S. 2002, MNRAS, 329, 246
- Cabrit, S. 2002, EAS Publications Series, 3, 147
- Carr, J. S., Tokunaga, A. T., & Najita, J. 2004, ApJ, 603, 213
- Cazaux, S., Tielens, A. G. G. M., Ceccarelli, C., Castets, A., Wakelam, V., Caux, E., Parise, B., & Teyssier, D. 2002, ApJ, 593, L51
- Cen, R., 2003, ApJ, 591, 12
- Chapman, S., et al., 2003, Nature, 422, 695-698
- Cooray, A. & Yoshida, N. 2004, MNRAS, 351, L71
- Cowie, L. L., Hu, E. M., 1998, AJ, 115, 1319
- Cowie, L. L., Songaila, A., Hu, E. M., Cohen, J. G., 1996, AJ, 112, 839
- Crovisier et al. 1997, Science, 275, 1904.
- Debes, Ge & Chakraborty 2002, ApJL. 572, 165 168
- Dickinson, M. 2000, Building Galaxies; from the Primordial Universe to the Present, 257
- Dole et al. 2004, ApJS, 154, 87

- Dwek, E. & Scalo, J. M. 1980, ApJ, 239, 193
- Ealey et al. 2002, NASA Space Optics Manufacturing Center Tech Days 2002, presentation 08
- Edwards, S., Ray, T., & Mundt, R. 1993, in Protostars and Planets III, eds. E. H. Levy, J. I. Lunine (Tucson: Univ. Ariz. Press), 567
- Emery et al. 2003, Icarus 164 104-121
- Enya, K., et al., 2004, SPIE 5487, 1092
- Fan, X. et al., 2002, AJ, 123, 1247
- Ferrara, A. 2004, ASP conf ser. 309, 331
- Förster Schreiber, N. M., Genzel, R., Lutz, D., Kunze, D., & Sternberg, A. 2001, ApJ, 552, 544
- Geller, M. J. & Huchra, J. P. 1989, Science, 246, 897
- Genzel, R. et al 2003, ApJ, 594, 812
- Gerardy, C. L. et al. 2002, ApJ, 575, 1007
- Gerardy, C. L. et al. 2000, AJ, 119, 2968
- Giavalisco, M., Steidel, C. C., Macchetto, F. D., 1996, ApJ, 470, 189
- Gibb et al.2002, in Asteroids, Comets and Meteors, ESA-SP500, 705.
- Grün et al. 2001, A& A, 377, 1098-1118
- Guyon 2003, A&A 404, 379 387
- Haas, M. R. et al. 1990, ApJ, 360, 257
- Haiman, Z. 2002, ApJ, 576, 1
- Hamana, T., Ouchi, M., Shimasaku, K., Kayo, I., & Suto, Y. 2004, MNRAS, 347, 813
- Hartmann, L. 1982, ApJS, 48, 109
- Hasegawa et al. 2003, GRL, 30, 21
- Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532
- Hirashita, H. & Ferrara, A. 2002, MNRAS, 337, 921
- Honda, M., Kataza, H., Okamoto, Y. K., Miyata, T., Yamashita, T., Sako, S., Takubo, S., & Onaka, K. 2003, ApJ, 585, L59
- Imanishi & Maloney 2003 ApJ 588 165
- Imanishi & Dudley 2000 ApJ 545 701
- Jacquinot & Roizen-Dossier 1964, Prog. Opt. 3, 29

- Jayawardhana, R. et al. 2003, AJ, 126, 1515
- Kajisawa, M. & Yamada, T. 2004, ApJ, 618, 91
- Kajisawa, M. & Yamada, T. 2001, PASJ, 53, 833
- Kamaya, H., Silk, J., 2002, MNRAS, 332, 251
- Kaneda, H., et al., 2004, ESA SP-554, 699
- Kaneda, H., et al., 2004, SPIE 5487, 991
- Kaneda, H., et al., 2003, Appl. Opt. 42, 708
- Kauffmann, G., Charlot, C., 1998, MNRAS, 297, 23
- Kawakita et al. 2004, ApJ, 601, 1152.
- Kawakita et al. 2003, ApJ, 590, 573.
- Kessler M.F. et al. 1996, A&A, 315, L27
- Klein, R. et al. 2003, ApJ, 593, L57
- Kodama, T., Bower, R. G., 2003, MNRAS, 346, 1
- Kodama, T., et al., 2004, MNRAS, 350, 1005
- Kodama, T., Smail, I., Nakata, F., Okamura, S., Bower, R. G., 2001, ApJ, 562, L9
- Kodama, T., Arimoto, N., Barger, A. J., Aragón-Salamanca, A., 1998, A&A, 334, 99
- Kozasa, T., Hasegawa, H., & Nomoto, K. 1989, ApJ, 346, L81
- Kozma 1999, astro-ph/9903405
- Lada, C. J., & Lada, E. A. 2003, ARAA, 41, 57
- Launhardt, R. et al 2002 A& A, 384, 112
- Loeb, A., Barkana, R. & Hernquist, L. 2004, astro-ph/0403193
- Lundqvist, P. et al. 1999, A& A, 347, 500
- Madau, P. et al. 2004, ApJ, 604, 484
- Madau, P. & Rees, M. 2000, ApJ, 542, L69
- Martin-Hernandez et al. 2005 A&A 429 449
- Matsuhara et al. 2000, A&A...361..407
- Mezger, P. G. et al 1999, A& A, 348, 457
- Mizusawa, Nishi, R., Omukai, K., 2004, PASJ, 56, 487
- Mizusawa H., Nishi, R., Omukai, K., 2004, in preparation

- Mohanty, S. et al. 2004, ApJ, 609, L33
- Morris, M. & Serabyn, E. 1996, ARAA, 34, 645
- Moseley, S. H. et al. 1989, ApJ, 347, 1119
- Moustakas, L. A. & Somerville, R. S. 2002, ApJ, 577, 1
- Muench et al. 2002, ApJ, 573, 366
- Mumma et al. 2003, Adv. Space Res., 31, 2563.
- Mumma et al. 1997, Science, 272, 1310.
- Mumma et al. 1993, in Protoster and Planets, 1177.
- Mundt, R. 1984, ApJ, 280, 749
- Mundt, R., & Fried, J. W. 1983, ApJ, 274, L83
- Munoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A., Barbier, B., Arcones Segovia, A., Rosenbauer, H., Thiemann, W. H. -P., Brack, A., & Greenberg, J. M. 2002, Nature, 416, 403
- Murakami, H. et al. 1996, PASJ, 48, L41
- Murakawa et al. 2004, PASJ 56, 509 519
- Nagata, T. et al 1995, AJ, 109, 1676
- Nakagawa, T., Yui, Y. Y., Doi, Y., Okuda, H., Shibai, H., Mochizuki, K., Nisimura, T., and Low, F. J. 2004, ApJS, 115, 259
- Nakagawa, T. 2004, Advances in Space Research, 34, 645
- Natta, A., & Testi, L. 2001, A& A, 376, L22
- Naylor, B.J., Bradford, C.M. et al. 2003, Proc. SPIE, 4855, 239
- Niesenson & Papaliolios 2001, ApJL 548, 201 204
- Notesco, Laufer, & Bar-Nun 1997, Icarus, 125, 471.
- Nozawa, T., Kozasa, T., Umeda, H., Maeda, K., Nomoto, K. 2003, ApJ 598, 785-803
- Oasa, Y., Tamura, M. et al. 2004, in prep.
- Oasa, Y. et al. 1999; ApJ, 526, 336
- Okuda, H. et al 1989, ApJ, 351, 89
- Omukai, K., Nishi, R., 1998, ApJ, 508, 141
- Onaka, T., et al., 2004, ESA SP-554, 297
- Ouchi, M. et al., 2003, ApJ, 582, 60

- Ozaki, T., et al., 2004, SPIE 5494, 366
- Pettini, M. et al. 1994, ApJ, 426, 79
- Philipp, S. et al 1999, A& A, 348, 768
- Pozzetti, L., et al., 2003, A&A, 402, 837
- Pyo, T.-S. et al. 2005, ApJ, Jan 10 issue, in press
- Pyo, T. -S. et al. 2004, AAS, 204, 8270
- Pyo, T. -S. et al. 2003, ApJ, 590, 340
- Pyo, T. -S. et al. 2002, ApJ, 570, 724
- Reipurth, B. & Bally, J. 2001, ARAA, 39, 403
- Ripamonti, E. et al., 2002, MNRAS, 334, 401
- Rouan et al. 2000, PASP 112, 1479 1486
- owland, H.A. 1883, Phil. Mag. 16, 197
- Salpeter, E. E. 1955, ApJ, 121, 161
- Salvaterra, R. & Ferrara, A. 2003, MNRAS, 339, 973
- Salvaterra, R. & Ferrara, A. 2003, MNRAS, 339, 973
- Santos, M. 2004, MNRAS, 349, 1137
- Santos, M. R., Bromm, V., & Kamionkowski, M. 2002, MNRAS, 336, 1082
- Sawicki, M., 2002, AJ, 124, 3050
- Shimasaku, K., et al., 2003, ApJ, 568, L111

Shu, F. H., Najita J., Galli, D., Ostriker, E., & Lizano S. 1993, in Protostars and Planets III, eds, E. H. Levy & J. I., Lunine (Tucson: University of Arizona Press), 3

- Sokasian, A., Yoshida, N., Abel, T., Hernquist, L. & Springel, V. 2004, MNRAS, 350, 47
- Spergel, D. N., et al., 2003, ApJS, 148, 175
- Spergel 2001, Astro-ph, 0101142
- Spinoglio, L. & Malkan, M. A. 1992, ApJ, 399, 504
- Stantcheva, T. & Herbst, E. 2004, A& A, 423, 241
- Steidel, C. C., Pettini, M., Hamilton, D., 1995, AJ, 110, 2519
- Susa, H., Umemura, M., 2004, ApJ, 600, 1
- Susa, H., Umemura, M., 2004, ApJ, 610, L5

- Swinyard, B.M., et al. 2003, Proc. SPIE, 4850, 698
- Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., & Comito. C. 2002, ApJ, 569, 815
- Tamura, M. et al. 1998, Science, 282, 1095
- Terzieva, R. & Herbst, E. 1998, ApJ, 501, 207
- Thornley, M. D., Schreiber, N. M. F., Lutz, D., Genzel, R., Spoon, H. W. W., Kunze, D., & Sternberg, A. 2000, ApJ, 539, 641
- Todini, P. & Ferrara, A. 2001, MNRAS, 325, 726
- Toulemont, Y., et al., 2004, SPIE 5487, 1001
- Ueda, Y., Akiyama, M., Ohta, K., Miyaji, T. 2003, ApJ 598, 886
- Velusamy, T. & Langer, W. D. 1998, Nature, 392, 685
- Verde, L. et al. 2002, MNRAS, 335, 432
- Watanabe, N. & Kouchi, A. 2002, ApJ, 571, L173
- Werner M.W. et al. 2004, ApJS Spitzer special issue (astro-ph/0406223)
- White, R.L., Becker, R. H., Fan, X. & Strauss, M. A. 2003, AJ,
- Zijlstra, A. A. 2002, ApJ, 572, 1006
- van Dishoeck, E. F. & Blake, G. A. 1998, ARAA, 36, 317
- van den Bosch, F. C., Yang, X., & Mo, H. J. 2003, MNRAS, 340, 771
- Wada, B. K., 1999, 金田、日本機械学会誌 1999.2, 102, 963, p76
- **尾中ほか、2003年、第3回宇宙科学シンポジウム** proceedings、187
- 金田ほか、2001年、第2回宇宙科学シンポジウム proceedings、131

次世代赤外線天文衛星 SPICA ミッション提案書 2005 年 3 月発行 発行 次期赤外線天文衛星ワーキンググループ 誌面編集 中川貴雄、塩谷圭吾、西松久美子