

「あかり」が切り開く 銀河系外アストロケミストリーの世界

下西 隆 (東北大学)

「あかり」サイエンスワークショップ@ NAOJ 2016.11.7

Extragalactic Astrochemistry

• How do environmental characteristics of galaxies affect chemical properties of interstellar medium?

• What is the effect of galactic metallicity on the interstellar chemistry?

The Large and Small Magellanic Clouds

•Nearest star-forming galaxies $-d_{LMC/SMC} = 50/60 \text{ kpc}^1 (1" = 0.25/0.3 \text{ pc})$ -nearly face-on² (LMC, i ~35°)

•Low metallicity³

—LMC : ~1/2-1/3, SMC : ~1/5-1/10 of solar neighborhood

=> This metallicity corresponds to that of the past universe at z = 1 - 2, which is close to an epoch of peak star-formation⁴

¹Alves, 2004, ²Westerlund, 1990, ³Luck et al. 1998 ⁴ e.g., Hopkins & Beacom 2006, Rafelski et al. 2012

Fig.2 Optical images of the LMC and SMC [Ref. E. Slawik (LMC), A. Nota/ESA, STScI (SMC)]

Environmental characteristics of LMC/SMC

• Elemental abundances

- low-metallicity and different C, N, O, S relative abundances
- (e.g., Dufour+ 1982, Andrievsky+ 2001, Korn+ 2002, Rollenston+ 2002)
- Interstellar ultraviolet radiation field
 - 10–100 times higher than typical Galactic value
 (Israel & de Graauw, 1986, Tumlinson+ 2002, Browning+ 2003)

Dust temperature

- higher than our Galaxy (e.g., MW: 15–19K, LMC: ~22–25K, SMC: ~30K, Aguirre+ 2003, Sakon+ 2006, results for <u>diffuse clouds</u>)
- Cosmic-ray density (cosmic-ray ionization rate)
 - -3 to 4 times smaller than the solar neighborhood
 - (Abdo+ 2009, 2010 based on gamma-ray observations by FERMI

Infrared observations of ices

Ice observations for Galactic objects

 Infrared spectroscopic observations of ices toward various objects¹ (including high-/low-mass YSOs, quiescent clouds, extragalaxies)
 Detections of similar molecular species in comets²

Fig.5 Infrared absorption spectrum of ices toward various targets [Oberg+ 2011]

Fig.6 Typical abundances of ices around high-/low-mass YSOs [Oberg+ 2011]

¹ e.g., Boogert+ 2015, ²Ehrenfreund+ 2000, 2002, Ootsubo+ 2012

AKARI/IRC survey of the LMC (LSLMC)

Fig.7 AKARI three-color image of the LMC (Blue: 3 μm, Green: 7 μm, Red: 15 μm)

Ice observations for LMC/SMC YSOs

Fig.8 Infrared spectrum of a high-mass YSO in the LMC

Table.1 Summary of ice detections toward high-mass YSOs in the Magellanic Clouds

λ [μm]	Cloud	No.	Ice band	References
2-5 (AKARI, VLT)	LMC	20	H ₂ O, CH ₃ OH, CO ₂ , CO, (XCN)	van Loon+ 2005; Oliveira+ 2006, 2011; Shimonishi+ 2008, 2010, 2012, 2016a
	SMC	12	H ₂ O, CO ₂ , CO	van Loon+ 2008; Oliveira+ 2011, 2013; Shimonishi+ 2012
5-20 (Spitzer)	LMC	54	(H ₂ O), CO ₂ , (NH ₃)	van Loon+ 2005; Oliveira+ 2009, 2011; Seale+ 2009, 2011; Shimonishi+ 2016a
	SMC	15	(H ₂ O), CO ₂	Oliveira+ 2011, 2013
60-70 (Spitzer)	LMC	5	H ₂ O	van Loon+ 2010a
	SMC	1	H ₂ O	van Loon+ 2010b

Chemical compositions of ices in the LMC (1/2-1/3 lower metallicity)

Fig.9 Comparison of ice compositions for LMC's and Galactic high-mass YSOs

Chemical compositions of ices in the SMC (1/5-1/10 lower metallicity)

Fig.10 Comparison of ice compositions for SMC's and Galactic high-mass YSOs

Warm ice chemistry (see Shimonishi+ 2016a)

Possible characteristics of ice chemistry as a function of galactic metallicity

 Grain surface chemistry at higher dust temperature is a key (Acharyya & Herbst, 2015, 2016; Shimonishi+ 2016a)

Dust temperature vs. metallicity for extragalaxies

Fig.12 Far-infrared color temperature vs. metallicity for external galaxies [Engelbracht+ 2008]

Chemistry in star-/planet-forming regions

[van Dishoeck and Blake, 1998]

Future: Next generation telescopes

Fig.14 Wavelength coverage of spectrometers on JWST and SPICA. Background is an infrared spectrum of a high-mass YSO W33A [Gibb+ 2004]

Observations of an extragalactic hot molecular core with ALMA

- Purpose: To understand the gas-grain chemistry in low-metallicity environments
- Target: a high-mass YSO, ST11, observed with *AKARI*
- Results: The first detection of an extragalactic hot core

Fig.15 ALMA observations of a LMC high-mass YSO, ST11 [Shimonishi+ 2016b]

Molecular line emission from a LMC hot core

Molecular abundances of Galactic and extragalactic hot cores

- Optically thin and LTE assumption
- N(H₂) from dust continuum
- T_{ext} = 100 K assumed except for SO₂

Fig.17 Comparison of molecular abundances for LMC and Galactic hot cores [Shimonishi+ 2016b]

まとめ

- ●「あかり」により銀河系外の大質量YSOに付随する氷の観測が大きく発展した
- 結果として、低金属量環境下ではダスト表面反応の違いにより、原始星に付随する氷の化学組成が異なることが示唆された
- JWST, SPICAなどの次世代宇宙望遠鏡により大小マゼラン雲及び局所銀河 群内の大・中・小質量YSOの氷・ダストの分光観測が可能になる

―サンプル天体数及び検出可能分子種の大幅な増加、中小質量YSOへの拡大 など、飛躍的な研究の発展が見込まれる

● ALMA観測との連携により、固相・気相の両面から銀河系外原始星の化学組 成を探ることが可能になりつつある

