

US proposed instruments

Shuji Matsuura, Hideo Matsuhara and Takao Nakagawa (ISAS, JAXA)

Space Infrared Telescope for Cosmology and Astrophysics

US proposed instrument(s)

- NASA called for proposal to study a full US-led SPICA instrument (NRA ROSES 2009).
- Selected 3 proposals

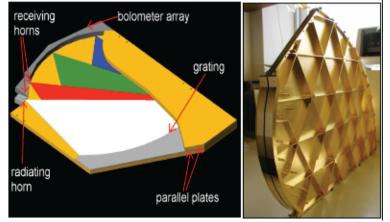
BLISS for SPICA: Sensitive Far-IR Spectroscopy Reveals the Cosmic History of Galaxies and Organic Elements

PI: Charles(Matt) Bradford (Caltech/JPL)

- μ-**Spec**: A Revolutionary Far Infrared Spectroscopic Capability for SPICA PI: Samuel(Harvey) Moseley (NASA/GSFC)
- **WISPIR**: Wide-field Imaging SPectrograph for the InfraRed
 - Co-PI: Lee Mundy (University of Maryland) and Dominic Benford (NASA/GSFC)
- Aug 2010: The US Decadal Survey (astro2010) committee strongly recommends US participation to SPICA.
- Sep 2010: Final study reports
 - We are now discussing about implementation of the US instrument.

BLISS overview

BLISS (The Background Limited Infrared Submillimeter Spectrograph) : Sensitive Far-IR Spectroscopy Reveals the Cosmic History of Galaxies and Organic Elements


- BLISS is a 38-433 µm grating spectrometer (R=700)
 - Fills gap between JWST / SPICA-MIR and ALMA with comparable sensitivity.
- The BLISS grating architecture provides maximum sensitivity.
 - BLISS-SPICA is the only way to study a meaningful sample of the tens of thousands of high-redshift galaxies and protoplanetary systems now being discovered with Herschel and other imaging systems.

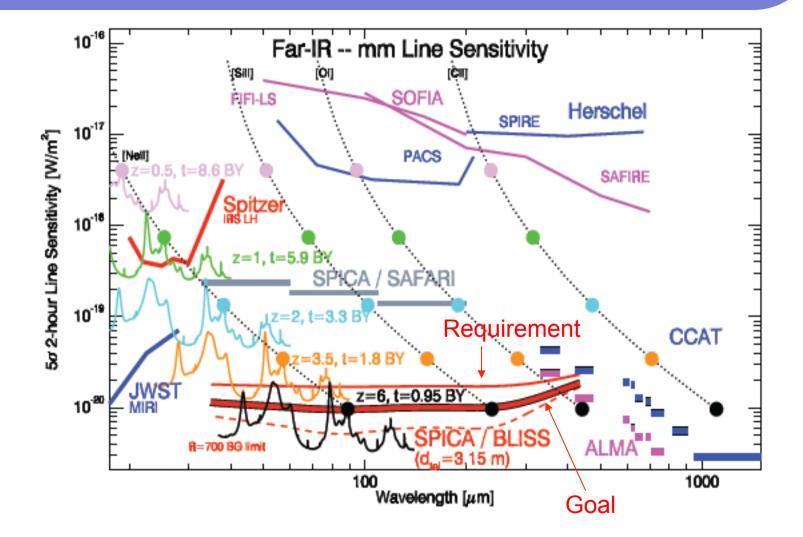
BLISS is compact, low mass, and has simple interfaces.

- Only moving part is a chopping mirror.
- Cold mass less than 30 kg, size 45x40x40 cm, bolts to 4.5 K instrument bench and rejects heat to SPICA 1.7 K cold finger.
- BLISS uses TES bolometer arrays with

a now-standard SQUID multiplexer.

- Systems issues proven in several scientific instruments.
- Clear path to achieving the uniquely sensitive bolometers required for BLISS.

Waveguide grating spectrometer (WaFIRS) for Z-Spec (as proto-type of BLISS)

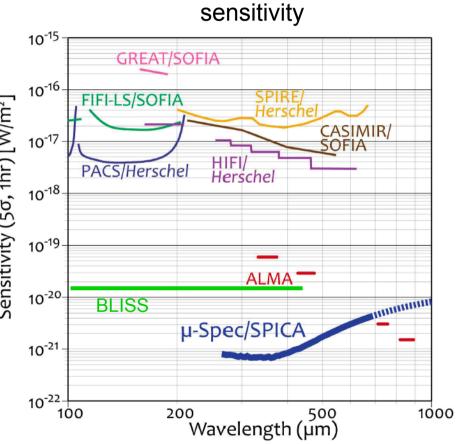

BLISS specifications

	BLISS
Line sensitivity (5 σ , 1h)	1×10 ⁻²⁰ Wm ⁻²
Resolving power (R= $\lambda/\Delta\lambda$)	700
Spectral coverage	38-433 μm
Number of beams	2 (source & ref), Diffraction Itd.
Detector format	4224
Detector sensitivity	5×10 ⁻²⁰ W/√Hz
Detector technology	TES bolometer
Readout	Time-domain SQUID MUX
Spectrometer	WaFIRS waveguide grating
Cooler	50mK ADR + 300mK ³ He sorption

BLISS sensitivity

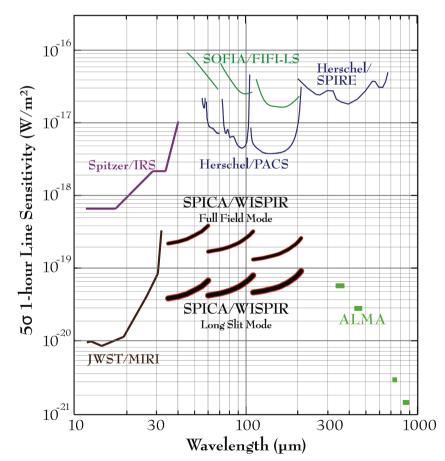
µ-Spec overview

µ-Spec: A revolutionary Far Infrared Spectroscopic Capability for SPICA


- Objectives: similar to BLISS
 - Very high redshift objects (out to z~10)
 - H_2O , O_2 molecular lines in ISM
- Ultra-high sensitivity & high resolution with compact system
- Novel technologies
 - λ = 250-700µm
 - Micro-strip delay-line spectrometer (R~1500)
 - MKID (Microwave Kinetic Inductance), several times higher sensitivity than TES
 - Ultra compact spectrometer module fabricated on a ~100mm(!) Si-wafer
- 50mK ADR / 300mK ³He tandem cooler system (ASTRO-H)

µ-Spec specifications

	μ-Spec	
Line sensitivity (5σ, 1h)	1×10 ⁻²¹ Wm ⁻²	
Resolving power (R= $\lambda/\Delta\lambda$)	1500	N/m²]
Spectral coverage	250-700 μm	רר) [\
Number of beams	1-7 TBD, Diffraction Itd.	Sensitivity (50, 1hr) [W/m²]
Detector format	~4000	sitivi
Detector sensitivity	1×10 ⁻²⁰ W/√Hz	Sen:
Detector technology	MKID	
Readout	Microwave HEMT	
Spectrometer	Delay line spectrometer	
Cooler	<300mK TBD	


6

WISPIR overview

WISPIR: Wide-field Imaging Spectrometer for the InfraRed

- Objectives: high-z galaxies & molecular lines in local universe
- Imaging FT spectrometer
- 35-210µm(3 bands), R=1000-6000
- GSFC TES bolometer & SQUID MUX (NEP~4x10⁻²⁰ W/√Hz)
- 50mK/300mK tandem cooler (ASTRO-H)
- High sensitivity with slit+grism
 - Improvement of SAFARI

All proposed US instruments:

- FIR/sub-mm spectrometers with dispersion elements
- Super-conducting detectors with ultra-high sensitivity
- Optimized for spectral line detection of point source
 complementary with SAFARI (imaging FT)

