Spica science with two mid-infrared arms

スピカの二つの中間赤外線アーム による研究

(ISAS High energy astrophysics group PD Fellow)

Gangi

I. Sakon, N. Isobe, A. Bamba, D. Asmus, A.C. Fabian. M. Durant, T.R. Marsh, V. Dhillon, A. Smette, K. Iwasawa

~10-20 μm and ~20-40 μm : both justified?

Low resolution spectroscopy (5-10 microns) 3000 nJy at 7.5 microns

Medium resolution spectroscopy (IFU, 10,000s per setting)

Lamda (Microns)	Line Flux (W/m^2)
6.4	7.00E-21
9.2	1.00E-20
14.5	1.20E-20
22.5	6.00E-20

MIRI Camera		
Lambda (Microns)	microJansky	
5.6	0.2	
7.7	0.28	
10	0.7	
11.3	1.7	
12.8	1.4	
15	1.8	
18	4.3	
21	8.6	
25.5	28	

Sensitivity (point source): 100 s

Contents

- 1) Cross-calibration
- 2) Angular resolution (source identification)
- 3) Low luminosity active galactic nuclei (LLAGN)
- 4) Stellar-mass accreting sources

P. S.

- Some interesting science topics
- Personal and biased list
- Topics not covered by others, e.g. high z

1. Cross-calibration

Up to 46% cross-calibration flux uncertainty!

2. Source identification

2. Source identification: supernova (remnant)?

Requirements:

- 1) <~1"-2" PSF
- 2) LR spec *R*~ few 100

3) broad spectral coverage with <u>single</u> mission to avoid confusion.

Red: Subaru COMICS Nell Green: HST WFPC 1 μm Blue: Chandra ACIS Magenta and white: Radio

(Gandhi+11 submitted)

Ueda et al. (2003)

Ζ

3. Low Luminosity AGN: important questions

• Do 100% of (bulgy) galaxies possess black holes?

- Are they simply scaled down versions of Seyferts and quasars?
 - Intrinsically low luminosity?
 - Obscured?

• Can they bridge the gap between stellar-mass black holes and super-massive sources?

3. Low Luminosity AGN: important questions

• Do 100% of (bulgy) galaxies possess black holes?

- Are they simply scaled down versions of Seyferts and quasars?
 - Intrinsically low luminosity?
 - Obscured?

• Can they bridge the gap between stellar-mass black holes and super-massive sources?

Power source in LLAGN?

Power source in LLAGN?

What is IR power source in LLAGN?

Where does torus emission peak?

Narrow Line Region

Broad Line

Ramos Almeida et al. (2009)

4. Variability / Transient studies: best case for broad band coverage?

- Jets in accreting X-ray binaries
- Gamma ray burst afterglows
- Transits / eclipses
- Microlensing events
- Supernovae

Astronomical observational domains

1. Imaging

T=0.00s

3. Time domain is least explored: "unknown unknowns"

4. Variability / Transient studies: best case for broad band coverage?

- Jets in accreting X-ray binaries
- Gamma ray burst afterglows
- Transits / eclipses
- Microlensing events
- Supernovae

MAXI/GSC All-sky map: first 10 months

2009/8/15 - 2010/6/16

Red: 2-4 keV Green: 4-8 keV Blue: 8-16 keV (exposure not corrected)

300+ Galactic X-ray binaries known (growing fast)

(Slide : MAXI First year symposium. N. Kawai)

X-ray binaries

X-ray heating

Jet Kinetic power dominates above radiative in most systems

Hot spot

Corona

Accretion

disc

Accretion stream

Companion

star

R. Hynes 2001

Timing studies of Galactic black holes

Rapid aperiodic flickering commonly seen in X-rays

Speedy optical variability

GX 339-4 : Galactic black hole binary (mass > 6M_{sun})

VLT / ULTRACAM

∆*T*=50 ms

Animation: binsim

(P. Gandhi et al. 2008, 2010)

Power spectra of variations

Next step: IR jet still completely unexplored

ca. 2018 : Variability boom ?

MAXI

LOFAR/ E-VLA

Super Infrared sCience w/2 arms

Avoid cross-calibration problems

• Make full use of high angular resolution

• Revolutionise LLAGN studies

• Study transient phenomena