SPICA Science Workshop 2010

SPICA高分散分光観測で明らかにする、 ULIRGs中心領域のガスの物理状態

Mai Shirahata (ISAS/JAXA) Takao Nakagawa (ISAS/JAXA)

~ Faheja

@ NAOJ

3 Gas & Dust in ULIRGs GNs PAH equivalent width (6.2µm) [µm] Spoon et al. (2007) the physical condition of the obscuring gas & dust (Temperature, Density, Total amount)

CO Ro-vibrational Absorption Lines

CO is much contained in molecular gas. Observe CO ro-vibrational lines in absorption.

- Many lines at different excitation energy levels can be observed simultaneously.
 ⇒ Temperature, Column density
- ②. Use the bright, compact AGN as a background continuum source.
 ⇒ High spatial resolution
- ③. High spectral resolution
 ⇒ Velocity structure in the molecular gas
- ☆. Need background source
 ⇒ Seyfert 2 galaxies, obscured AGNs

Shirahata et al. submitted

High excitation (J≦17)
 Line width : extremely broad (FWZI >400 km/s)
 Red- & Blue- shifted components were revealed.
 Line depth : Deep (60% of the continuum level)

Physical Conditions

Temperature

- At least two components: 273K(warm) & 24K(cold)
- e High temperature (c.f.) typical molecular clouds ≪100 K
- heated by AGN ?

Column density

- $N_{co} = (1.98 \pm 0.01) \times 10^{18} \text{ cm}^{-2} (\text{cold})$
- $N_{co} = (4.48 \pm 0.04) \times 10^{18} \text{ cm}^{-2} (\text{warm})$
- N_{H2} = 1.1×10²²cm⁻² (cold)
- N_{H2} = 2.5×10²²cm⁻²(warm)

Density

- well thermalized at least J=17
- Critical density (collision with H₂) n_c=2×10⁷ cm⁻³ (dense)
- Geometrical thickness
 - $N_{H2}/n_{c} < 4 \times 10^{-4} pc \sim 80 AU$

Even if highly Clumpy… (1-100)×10⁻⁴pc ⇒ still extremely thin

Line Profile

Many components were revealed obviously.

0km/s component

detected in only low-J (J≦5) ⇒ low temperature(24K@Cf=0.6) Systemic velocity ⇒ Host galaxy

-160km/s component

detected in all transitions (J=0~17) ⇒ high temperature(272K@Cf=0.6) Blue Shift ⇒ Outflow ? Mass ejection?

+100km/s component

detected only in high-J(J≧4) ⇒ more high temperature(700K) Red Shift ⇒ Inflow? Mass injection?

UGC 05101

 High excitation (J≦19)
 Line width : extremely broad (FWZI >400 km/s)
 Red- & Blue- shifted components (-200km/s,+30km/s)
 Temperature 759±56K Column density N_{co} = (1.82±0.09)×10¹⁸cm⁻², N_{H2} = 1.0×10²²cm⁻² Critical density n_c = 3×10⁷ cm⁻³, Thickness 1×10⁻⁴pc ~ 20AU

Absorbers

XDR Theory Model

From Subaru to AKARI

 CO absorption lines were detected from 3 obscured AGNs. (Arp220 is too weak.)
 Target selection criteria → bright at 5um(~100mJy), Redshift < 0.13

Increase the number of targets

 → need the high sensitivity observation

 Increase the range of observing wavelength

 → need to free from the earth's atmosphere

- Continuous coverage from NIR to MIR important plentiful molecular absorption & PAH emission
- High quality spectra

free from the atmospheric influence

The only equipment to take 2-5um spectra. Spitzer does not have.

Nakagawa et al., in prep.

KAR

13

Structure of ULIRGs

IRAS 08572+3915

Starburst

Dense cold gas

AGN

Dense warm gas Diffuse cold gas AGN Dense warm gas

UGC 05101

Diffuse cold gas

From AKARI to SPICA

 CO absorption lines were detected from 30 obscured AGNs !!
 Brightness at 5um : >1mJy, Redshift : < 0.3

We need high-spectral resolution spectra !! • High spectral resolution : R~10000 • Wide wavelength coverage : 4 - 7um

MCS / HRS-S 4-8 um, R=30,000

(TMT **)**

IRIS N 0.6-5 um, R > 3500 MIRES 4.5-28 um, R = 5000-10000

[JWST]

MIRI 5-28 um, R=2070-3730

0.5 0

4.77

4.78

4.79

4.80

4.81

4.84

4.85

4.86

4.87

4.88

4.81 4.82 4.83 4.84 Observed Wavelength [μm]

