

Interstellar and Circumstellar physics and chemistry targeted by MIR Medium Resolution Spectrometer

Itsuki Sakon (University of Tokyo) SPICA Mid-Infrared Camera and Spectrometers (MCS) Medium Resolution Spectrometers (MRS) Science Team

Abstract and Summary Science Target of SPICA/MCS/MRS

Understanding of physical transitions among various phases of the Interstellar Medium (ISM) and their chemical reaction networks

Tools; Spectral Features present in the Mid-Infrared wavelengths Fine-structure lines from ionized atomic gas Emission lines from neutral molecular gas Band features due to vibration transitions of solid phase molecules Thermal emission from dust grains

Step 1; To Characterize the physical and chemical properties of the ISM Strength and hardness of the input energy into the ISM Excitation and ionization state of gas-phase atoms Elemental abundance in the gas-phase ISM Chemical composition of the dust grains Size distribution of the dust grains

Step 2; To illustrate the physical phase transition processes and chemical reaction networks among the ISM Formation of molecules and dust grains and grain growth Elemental depletion in the gas-phase Destruction of dust grains Chemical reactions in the gas phase Chemical reactions on the grain surface

Pioneering Challenges by ISO and Spitzer Space Telescope

Infrared Space Observatory (ISO)/ Short Wavelength Spectrometer(SWS)

Band orde	r no.	aperture	det.	Wavelength(µm)	resolution	Band orde	er no.	aperture	det. V	Vavelength(µm)	resolution
SW-gr	1A	14"-20"	InSb	2.38 - 2.61	1870-2110	LW-gr	3A	14"-27"	Si:As	12.0 - 16.6	1250-1760
SW-gr	1B	14"-20"	InSb	2.60 - 3.03	1470-1750	LW-gr	3C	14"-27"	Si:As	16.5 - 19.6	1760-2380
SW-gr	1D	14"-20"	InSb	3.02 - 3.53	1750-2150	LW-gr	3D	14"-27"	Si:As	19.5 - 27.6	980-1270
SW-gr	1E	14"-20"	InSb	3.52 - 4.06	1290-1540	LW-gr	3E	14"-27"	Si:As	27.5 - 29.0	980-1270
SW-gr	2A	14"-20"	Si:G	a 4.05 - 5.31	1540-2130	LW-gr	4	20"-33"	Ge:Be	e 28.9 - 45.2	1020-1630
SW-gr	2B	14"-20"	Si:G	a 5.30 - 7.01	930-1250	0					
SW-gr	2C	14"-20"	Si:G	a 7.00 - 12.1	1250-2450						

The SWS has 3 entrance apertures and each of the entrance apertures is used for two wavelength ranges Dichroic beam splitters behind the apertures split the incoming radiation in SW (2.4-12 μ m) and LW(12-45 μ m) The actual entrance slits (14"x20" for SW, 14"x27" and 20"x33" for LW) are located behind the beam splitters Two wavelength ranges can be observed simultaneously

Spitzer Space Telescope/ Infrared Spectrograph (IRS) SH and LH

Band ID SH LH	aperture p 4.7"x11.3" 11.1"x22.3"	blate scale 2.3"/pix 4.5"/pix	^{det.} Si:As Si:St	Wavelength(μm) 9.9 – 19.6 ο 18.7 – 37.2	resolution ~600 ~600	4.7" <mark>11.3</mark> "	Short-High (SH) 2.3"/pixel R~600	22.3" 11.1"	Long-High (LH) 4.5"/pixel R~600 18.7-37.2 micro
							9.9-19.6 micron		10.7-57.2 micro

Much more improved sensitivity than ISO/SWS

Different field-of-view locations and aperture areas projected on the sky between SH and LH Insufficient mapping capability

ionized gas ; [NeII] 12.81µm, [Ne III] 15.56µm, 36.01µm, [NeV] 14.32 µm, [S III] 33.48µm, 18.71µm, [SIV] 10.51µm, [PIII] 17.89µm, [ArIII] 21.83µm, [ArV] 13.07µm, [OIV] 25.89µm, [SiII] 34.82µm, [Fe II] 25.99 µm, 35.35µm, 17.94µm, 24.5µm, [FeIII] 22.93µm, 33.04µm molecular gas; H₂ S(0) 28.219µm, S(1) 17.035µm, S(2) 12.279µm, C_2H_2 (v_5 =1-0)13.7µm, HCN (v_2 =1—0) 14.04µm, ¹²CO₂ 14.9µm solid phase molecules and dust grains; GEMS, MgS, FeS, PAHs

MIR Line Diagnostics made by Medium Resolution Spectrometers

Identifying the dominant energy source of external galaxies (Lei Hao et al. 200)

 $\begin{array}{l} \label{eq:Diagnostics Fine-structure lines} \\ [\mathrm{NeIII}] 12.81 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}21.6\mathrm{eV}) \\ [\mathrm{Ne~III}] 15.56 \mu\mathrm{m}, 36.01 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}41.0\mathrm{eV}) \\ [\mathrm{NeV}] 14.32 \; \mu\mathrm{m}, 24.32 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}97.1\mathrm{eV}) \\ [\mathrm{S~III}] 33.48 \mu\mathrm{m}, 18.71 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}23.3\mathrm{eV}) \\ [\mathrm{SIV}] \; 10.51 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}34.8\mathrm{eV}) \\ [\mathrm{OIV}] \; 25.89 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}54.9\mathrm{eV}) \\ [\mathrm{SIII}] \; 34.82 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}8.2\mathrm{eV}) \\ [\mathrm{Fe~III}] \; 25.99 \; \mu\mathrm{m}, \; 35.35 \mu\mathrm{m}, 17.94 \mu\mathrm{m}, 24.5 \mu\mathrm{m} \; (\epsilon_{\mathrm{ip}}{=}7.9\mathrm{eV}) \end{array}$

Spitzer IRS Spectral Mapping observations of H2 S(0), S(1), S(2), S(3), S(4) and S(5) in Nearby Galaxy M51

Surface Density Distributions of warm phase (T~100-300K) H2 gas (left) and hot phase (T~400-1000K) H2 gas (Brunner et al. 2008, ApJ, 675, 316)

Useful MIR line diagnostics and requirements for MRS Specifications

Understanding of physical transitions among various phases of the Interstellar Medium (ISM) and their chemical reaction networks

Examples of MIR Spectroscopic Diagnostics

[OIV]25.89μm/[SIII]18.71μm, [NeIII]15.56μm/[NeII]12.81μm, [SIV]10.51μm/[SIII]18.71μm (hardness of the radiation field) [SIII]34.82μm/[SIII]33.46μm (gas-phase abundance of Si in the ionized gas) [FeIII]34.82μm/[SIII]33.46μm (gas-phase abundance of Fe in the ionized gas) H2 S(0) 28.219μm / H2 S(2) 12.279μm (useful to study the warm (T=~100—1000K) neutral phase of the ISM)

Requirements for Mid-Infrared Spectroscopic Capability

- Wide Wavelength Coverage in the Mid-Infrared (10-36 μ m)
- The consistency in the absolute flux calibration and the observational simultaneity between short and long wavelength modules shall be guaranteed
- The strength and the profile of fine structure and molecular lines shall be measured without blending R>1000 in 10-20μm (e.g., [FeII]17.94μm, [PIII] 17.885μm; Δλ~0.055μm)
 R>600 in 20-36μm (e.g., [OIV] 25.89μm, [FeII] 25.99μm; Δλ~0.098μm)
- The spectrometer shall be equipped with integrate field units (IFUs) of a wide field of view to achieve efficient spectral mapping observations (c.f., 2"x2" FOV size of JWST/MIRI)

Key Functions that shall be equipped to MRS to achieve the requirements above

- Dichroic Beam Splitter to split the incoming light into short (10-20μm) and long (20-36μm) modules
- Image Slicer as an integrate field unit in the fore-optics of each module

Space Infrared Telescope for Cosmology and Astrophysics

Sensitivity Requirement for SPICA/MCS/MRS

Sensitivity Requirement

6

Medium Resolution Spectrometer (MRS)

SPICA MCS/Medium Resolution Spectrometer (MRS)/Arm-S and Arm-L

Band ID	FOV	slitlet area	num. of slice	plate scale	det.	Wavelength(µm)	
Arm-S	6"x12"	1.2"x12"	5	0.403"/pix	Si:As (2kx2k: 25µm/pix)	10.0 - 20.0	~
Arm-L	12.5"x12"	2.5"x12"	5	0.485"/pix	Si:Sb (1kx1k: 18µm/pix)	19.5 – 36.1	~

Arm-S Echelle order	r λ _{min} (μm)	λ _{max} (μm)		Arm-L Echelle order	λ _{min} (μm)	λ _{max} (μm)
4	15.53	19.97	-	5	29.5	36.1
5	12.71	15.53		6	25.0	29.5
6	10.75	12.71		7	21.7	25.0
7	(9.98)	10.75		8	19.5	21.7

resolution ~1490@13μm ~680@27.8μm

Field of Views and Aperture areas

Summary

Indispensable Capabilities and Key Functions

Understanding of physical transitions among various phases of the Interstellar Medium (ISM) and their chemical reaction networks

Current proposed design of SPICA/MCS/MRS fulfills the specification requirements to achieve the science target proposed here

Particularly, the following capabilities *should not* be lost from the MRS

- Wide Wavelength Coverage in the Mid-Infrared (10-36 μ m)
- The identity of the FOV aperture and the observational simultaneity between Arm-S and Arm-L
- Moderate spectral resolution power of R>1000 in 10-20 μ m and R>600 in 20-36 μ m
- The spectral mapping efficiency with IFUs and wide field of view coverage

Key Functions that shall be equipped to MRS to achieve the requirements above

- Dichroic Beam Splitter to split the incoming light into short (10-20 μ m) and long (20-36 μ m) modules
- Image Slicer as an integrate field unit in the fore-optics of each module

