

# Proposed Science Programs for SPICA Near-Infrared Instrument

Woong-Seob Jeong<sup>1</sup>, Toshio Matsumoto<sup>2,3</sup>, Hyung Mok Lee<sup>2</sup>, Myungshin Im<sup>2</sup>, Bon-Chul Koo<sup>2</sup>, Jonghak Woo<sup>2</sup>, Masateru Ishiguro<sup>2</sup>, Myung Gyoon Lee<sup>2</sup>, Dae-Hee Lee<sup>1</sup>, Jeonghyun Pyo<sup>1</sup>, Chang Hee Ree<sup>1</sup>, Youngsik Park<sup>1</sup>, Uk-Won Nam<sup>1</sup>, Bongkon Moon<sup>1</sup>, Sung-Joon Park<sup>1</sup>, Kohji Tsumura<sup>3</sup>, Wonyong Han<sup>1</sup>, SPICA/FPC Team<sup>1,2,3,4</sup>

<sup>1</sup> KASI, Korea, <sup>2</sup> Seoul National University, Korea, <sup>3</sup> ISAS/JAXA, Japan, <sup>4</sup> NAOJ, Japan



SPICA Science Workshop, Dec. 16 ~ 17 2010 NAOJ, Japan



# FPC (Focal Plane Camera)

- Near-Infrared Camera: system instrument!
- Two FPCs (Focal Plane Camera)
  - FPC-G: Fine guiding system
    System instrument
    Positional information of identified star
  - FPC-S: Science purpose
    Back-up Instrument of FPC-G: primary function
    Near-IR Imaging & Spectroscopy: secondary function





## **Focal Plane Instruments**



Near-Infrared, Wide FOV, Low resolution spectroscopy & Imaging







# **Specification of FPC-S**

- FoV = **5 arcmin x 5 arcmin** (c.f. JWST: 2.3' x 4.4')
- Pixel scale = 0.3''(diffraction limit @ 5µm, telescope limit)
- Wavelength coverage =  $0.7 \sim 5.2 \mu m$
- 10 filter positions
  Imaging (R~5) & Low resolution spectroscopy (R~20)
  - 1 for a back-up of FPC-G (diffuser + I band)
  - 1 blank for dark calibration
  - 3 for LVF (Linear Variable Filter): surface spectroscopy!
    0.7~1.6μm, 1.4~2.8μm, 2.6~5.2μm
  - 5 for wide band (J, H, K, L and M band)
- QE & optical efficiency = 0.5 (assumed)
- Detector array = InSb 1k x 1k
- Readout noise = 20 electrons (Raytheon data)



### Space Infrared Telescope for Cosmology and Astrophysic



## **Expected Sensitivity**

3σ detection limit (100 sec integration, R~5)
 26.3mag(AB) for point sources

 $81 \cdot \lambda^{-1} \cdot t^{-1} nW.m^{-2}.sr^{-1}$  for extended sources

#### Vega magnitude

 $z(0.9\mu m)$  J(1.25 $\mu m$ ) H(1.6 $\mu m$ ) K(2.2 $\mu m$ ) M(5.0 $\mu m$ ) 25.6 25.2 24.8 24.2 22.4

 $\ast$  Photon noise becomes dominant for integration time >  $\sim \! 100$  sec





# **Scientific Targets**

- Legacy Programs
  - NIRSS: Near-Infrared Spectroscopic Survey with FPC for Cosmic IR Background and Extra galactic Sciences
  - Parallel Imaging Survey for Extragalactic Sciences
- Target of Opportunities
  - Comet Observations
  - Gamma-ray bursts





- Wide Field Spectroscopic Survey with LVFs (R~20)
  - Large throughput: ~20 times larger than JWST
  - Efficient low resolution surface spectroscopy
  - Wide wavelength coverage (0.7~5.2µm)
  - → advantage to observe diffuse light
- Primary Science: Cosmic Infrared Background Rad iation: Fluctuation and Spectrum
- Secondary Sciences: Lyman Break Galaxies up to r edshift 10, Emission Line Galaxies





# **NIRSS: Observational Strategy**

• Mode: LVF low resolution spectroscopy at 0.7 – 5.2μm

#### **1.** Spectroscopic observations for CNB

- angular coverage for 1 position: 30 arcsec x 5 arcmin (narrow region)
- 25 pixel step, 100 sec integration, R~10, co-adding 2x10<sup>4</sup> pixels
- 1σ detection limit: 0.86x(1µm/λ) nW.m<sup>-2</sup>.sr<sup>-1</sup>
  (cf. sky brightness at the J band is 350 nW.m<sup>-2</sup>.sr<sup>-1</sup>)
- Different ecliptic latitudes, ~37 hours for 3 LVFs
- Short period observations to avoid the seasonal variation of ZL

#### **2.** Common field for CNB & other sciences

- angular coverage : 15 arcmin x 15 arcmin
- 25 pixel step, 600 sec integration, R~20
- $3\sigma$  detection limit = 26.9 AB mag.
- Total observation time with 3 LVF is ~700 hours





#### NIRSS 1<sup>st</sup>: Cosmic NIR background (1/3)

#### **Major Scientific Point 1**

# Measurement of the spectrum of the sky to examine the nature of the excess background emission

Detection of the peak around  $1\mu m$  delineates the end of pop.III era Spectral shape is a measure of the contribution of emission components



- Spectroscopic survey at several ecliptic latitudes with wide wavelength coverage (0.7 5.2µm)
- Almost all foreground point sources
  can be removed
- Modeling of spectrum of zodiacal light makes it possible to subtract accurately



### NIRSS 1<sup>st</sup>: Cosmic NIR background (2/3)

#### Major Scientific Point 2

# Detection of the fluctuation of the sky brightness caused by pop.III stars.

- Zodiacal light is very smooth component (Abraham, Leinert & Lemk e 1997; Pyo et al. 2010, in preparation).
- Fluctuation scale indicates the mass of initial halo and the structure formation at pop.III era

- Wavelength dependence of fluctuation is an important clue to understand pop.III star formation





Smoothed image of NEP field observed with AKARI. Angular diameter is 10 arc-minutes. Wavelength band is 2.4, 3.2 and 4.1  $\mu$ m, from left to right.



### NIRSS 1<sup>st</sup>: Cosmic NIR background (3/3)

(nW.m<sup>-2</sup>.sr

#### Major Scientific Point 2

# Probe the epoch of formation and clustering properties of pop.III stars.

- NIR-MIR-FIR correlation: fluctuation by pop.III & pop.I, II, dust emissio n
  - Parallel observation with MIR in strument: redshifted Hα
  - CFIRB observation
- Fluctuation measurement up to 10~ 15 arcsec scale with wide waveleng th coverage (LVF) c.f. degree-scale fluctuation by MIRI
  - S
- Removal of faint galaxies: segregati on of shot noise & cluster of galaxie



Power spectrum of CNB fluctuation at 2.4 $\mu$ m from AKARI observation



S



#### NIRSS 2<sup>nd</sup>: Lyman Break Galaxies (1/3)

- Major scientific point: Understanding of High redshift s tar formation history of the Universe and the reionizati on
- LBGs: form stars actively & very bright
- A source will be detected in filters above the break but dropout of filters below it  $\rightarrow$  This leads to a break in the spectrum
  - V, R, I- drops (z~5.8), ..., J, H-drops (z~11)





12



#### NIRSS 2<sup>nd</sup>: Lyman Break Galaxies (2/3)

- Recent studies is limited to z~4
- The number of LBGs at high redshift is dramatically decreasing at z~7 (Iye et al. 2006; Bouwens et al. 2007)
- LBGs (z<3) from Spitzer observations (Huang et al. 2005)
  - Dust-attenuated star-forming regions
  - UV-emitting regions
- UV- and infrared-selected populations (Reddy et al. 2005)
- Parallel observations or warm missions
  - large number of samples
  - e.g., balmer break at MIR range
- New populations of LBGs?



Spectroscopically confirmed LAE at z=6.96 (lye et al. 2006)







#### NIRSS 2<sup>nd</sup>: Lyman Break Galaxies (3/3)

- Detection of Lyman break galaxi es with high redshift
  - z~6: 0.8; z~7: 0.2; z~8: 0.02
  - z~10: 0.01 per sq. arcmin (Bouwens et al. 2009, 2010)
  - NIRSS: 225 arcmin<sup>2</sup>
    - $\rightarrow$  ~ several LBGs @ z>10
- Advantage over JWST
  - Low resolution spectroscopic sur vey for large area: direct detecti on of LBGs & emission line galax ies
  - Spectroscopic data for possible e xtended objects
  - We can cover MIR and FIR wavel engths with other SPICA instrum ents



(Bouwens et al. 2010)





## **Target of Opportunities**

- Comets with LVF
  - Determination of molecular abundance H<sub>2</sub>O, CO, CO<sub>2</sub> and hydrocarbon in comets at the different heliocent ric distances
  - Consideration of the thermal evolution of ice in the s olar system
- Gamma-Ray Bursts
  - GRB's are found at very high redshift
  - Lyman break will take place in FPC waveband for hig h-z GRBs
  - Parallel MIR observations will provide valuable infor mation regarding the emission mechanism





# Summary

- SPICA/FPC-S is the near-IR instrument for scientif ic observations focused on the extragalactic scien ces.
- Low resolution spectroscopy survey (15'x15')
  - Cosmic infrared radiation: spectrum & fluctuation
  - High redshift galaxies (Lyman break galaxies, quasar, ...)
  - Emission line galaxies
- Parallel imaging survey
- Target of opportunities: comets, GRBs, ...

