Formation and evolution of galaxies explored with SPICA and ALMA

December 16-17, 2010, NAOJ, Mitaka, Japan

SAFARI+BLISS+ALMA strategy

 Blind imaging-spectroscopic survey with SAFARI: up to z~2 ULIRGs/SMGs

Best suited for z~2 cluster studies

- Targetted sensitive spectroscopy with BLISS: up to z~4 ?? ULIRGs/SMGs we need BLISS !
 - Physical properties of ionized gas (PDRs, HII regions, coronal regions) with FIR fine structure lines
 - Very high-J CO
- Detailed (subarcsec or better resolution) imaging study of spectroscopically confirmed bigh a UUPCC/SMCC + molecular gas

Sensitivity is the issue for high-z !!!

A large portion of the cosmic star formation is obscured by dust

Cosmic star formation history

Mm/submm is the best to uncover distant dusty extreme starbursts

Current situation on SMG study

- Flood of source detections !!!
 - From space: Herschel 250-500 um [mainly z<3]</p>
 - From ground: MAMBO, AzTEC, Laboca, SCUBA2, SPT, etc. 2mm – 350 um [1mm~850um deep surveys are already sensitive enough to z>5 ULIRGs] ※slow mapping speed from ground
- Redshift determination is a nightmare !
- Power source diagnostics is another difficulty (and much more challenging)

AzTEC-ASTE 1.1 mm deep surveys

 wide (~1.6 deg²) & deep (1σ ~ 0.4 − 1.2 mJy ⇔ ULIRGs @z>1) surveys of blank fields: yielding >750 robust detections

Field name	Survey area (30-50% coverage)	Noise level (1 sigma)	Num. of sources (S/N > 3.5)
SXDF	960 arcmin ²	0.5 – 0.9 mJy	174
SSA22	810 arcmin ²	0.6 – 1.2 mJy	113
ADF-S	970 arcmin ²	0.4 – 0.8 mJy	191
SDF	210 arcmin ²	0.7 – 1.0 mJy	25
SXDF z=5.7 clump	300 arcmin ²	~ 0.8 mJy	30
COSMOS	2700 arcmin ²	~ 1.1 mJy	193
GOODS-S	270 arcmin ²	0.5 – 0.7 mJy	48

• Biased regions survey: ~1 deg², >680 detections

(+ HDF-S, ECDF-S)

 High-z radio galaxies, X-ray and optically selected proto-clusters; ~160 arcmin² x ~40 fields:

>1400 detections in total, the largest ~1mm selected SMG sample

AzTEC/ASTE 1.1mm map of ADF-S

AzTEC/ASTE 1.1mm map of ADF-S

Constraints on redshifts of AzTEC/ASTE sources in ADF-S

Hatsukade + 2010, MNRAS, in press

- 90um/1.1mm flux ratio
 - \rightarrow most of the AzTEC sources (<u>196 of 198</u>) : z > 1
 - AKARI 90um sources : low-z, AzTEC 1.1mm sources: high-z
- L(FIR) ~ (3-14) x 10¹² Lo, SFR ~ 500-2400 Mo/yr

Herschel/SPIRE noise performance: instrumental noise vs confusion noise

Reaching a confusion limit very quickly!

SPIRE deep imaging examples

• This is indeed a confusion limited survey !

Current situation on SMG study

- Flood of source detections !!!
 - From space: Herschel 250-500 um [mainly z<3]</p>
 - From ground: MAMBO, AzTEC, Laboca, SCUBA2, SPT, etc. 2mm – 350 um [1mm~850um deep surveys are already sensitive enough to z>5 ULIRGs] ※slow mapping speed from ground
- Redshift determination is a nightmare !
- Power source diagnostics is another difficulty (and much more challenging)

"500 um risers" as very high-z (z>4) SMG candidates

 Higher redshift →
 SED peak of dust emission goes into the SPIRE bands; redder one in SPIRE color can be a high-z SMG candidate

Dowell et al. 2010

High-z (z > 5 !?) SMG candidates from AzTEC/ASTE

• SXDF, deep 20cm/24um/8um/etc... are

MIPS 24um

Ikarashi et al., in prep.

Submm Photometric redshift with ALMA early science 10^{3} z=1.0 **16 antennas** z=3.0 300 sec z=5.0 10^{2} 5σ z=7.0 Flux [mJy] 10^1 10^{0} ALMA R)=5x10¹²Lo band 10^{-1} 10^{-2}

100

10

Observing Wavelength [µm]

1000

10000

ALMA as a redshift machine

- CO line frequency interval = 115 GHz/(1+z)
 - Detections of two lines yield z_{co}
- ALMA band width = 8 GHz (IF=4-8, USB+LSB)
 - Multiple frequency setup (e.g., 4 different sets will be able to cover 28 GHz width)

Time Estimation

• $M_{gas} = 3 \times 10^{10} \text{ Mo} \Leftrightarrow L(IR) = 10^{13} \text{ Lo}$

- CO-H₂ conversion factor α_{cO} = 0.8 Mo/(K km/s pc^2)
- velocity width = 300 km/s

– velocity resolution = 50 km/s

CO	Z	V _{obs}	time for 5σ detection [min]	
		[GHz]	50 antennas	16 antennas
CO(3-2)	2.5	100	10/set	100/set

 With rough estimate of redshift (photo-z or dust-z), one night run will be sufficient to spec-z derivation for a few 10 bright SMGs (around z~2)

GRAVITATIONAL LENS CANDIDATES ID81

CSO/Z-spec blind redshiftdetermination for ID81 (March 09 2010) from observations of the CO ladder

Credit: The Zspec team

Power of ultra-wide band spectrometers Weiss et al. 2009,

ApJ, 705, L45

 New ultra-wide band spectrometer (32 GHz) at 3 mm band, for NRO 45 m telescope, is now under commissioning (lono et al, in prep.)

Current situation on SMG study

- Flood of source detections !!!
 - From space: Herschel 250-500 um [mainly z<3]</p>
 - From ground: MAMBO, AzTEC, Laboca, SCUBA2, SPT, etc. 2mm – 350 um [1mm~850um deep surveys are already sensitive enough to z>5 ULIRGs] ※slow mapping speed from ground
- Redshift determination is a nightmare !
- Power source diagnostics is another difficulty (and much more challenging)

Millimeter-wave molecular spectroscopy as a new diagnostic of nuclear energy source

AGN:

- HCN/HCO⁺ >2-3
- CN(J=3/2-1/2) $/(J=1/2-1/2) \sim 1?$
- →XDR chemistry?

MIR pumping? Maser?

Starburst:

HCN/HCO⁺ ~1

•
$$CN(J=3/2^{-1}/2)$$

 $/(J=1/2^{-1}/2) \sim 0.3$

→ PDR chemistry?

Nobeyama Millimeter Array Kohno et al. 2001, 2005, Kohno et al. 2008, ApSS, 313, 279

Larger AGN contribution to more luminous IR galaxies ?

- Local LIRGs/ULIRGs
- HCN/HCO⁺ ratios vs
 L(FIR) → trend?→
 larger contribution of
 AGN in more luminous
 IR galaxies?

 What is going on @HyLIRGs~SMGs?

Imanishi, et al. 2007, AJ, 124, 2366

ALMA spectroscopy of dusty starbursts can probe heavily obscured, growing AGN?

SPICA is the ultimate FIR spectrometer

- For photometry: distant FIR galaxies are ubiquitous ! We will be immediately reach the confusion limit at SAFARI wavelengths
 - SPICA is smaller than Herschel; worse in terms of confusion
- The uniqueness of SPICA@FIR: spectroscopy capability !
 - Make the best use of the cooled telescope + excellent detector technology

SAFARI+BLISS+ALMA strategy

 Blind imaging-spectroscopic survey with SAFARI: up to z~2 ULIRGs/SMGs

Best suited for z~2 cluster studies (Koyama-san +)

- Targetted sensitive spectroscopy with BLISS: up to z~4 ?? ULIRGs/SMGs
 - Physical properties of ionized gas (PDR, HII regions, coronal region) with FIR fine structure lines
- Detailed (subarcsec or better resolution) imaging study of spectroscopically confirmed high-z ULIRGs/SMGs + molecular gas

comnonant

The Multiplex Advantage Looking closer at the SPIRE background sources

SPICA FIR FTS will take spectra of 7-10 sources/field

Images Rosenbloom, Oliver, Smith, Raab private communication

MIR-to-FIR fine structure lines as a powerful diagnostic of energy sources of dusty galaxies

Can we see [CII] in SMGs?

In general, FIR fine Structure lines are weak..

How about SMGs?

Maiolino et al., 2009, A&A, 500, L1

Encouraging results from Herschel: 1st detection of fine structure lines from high-z extreme starbursts

Variation among SMGs

- MIPS J1428, a starburst-dominated system: NO [OI]/FIR DEFICIENT !!!
 - The far-UV flux G₀ and gas density n (PDR models), and the star formation efficiency (from CO and FIR) → similar to normal or starbursts
- F10214 has stringent upper limits on [O IV] and [S III], and an [O III]/FIR ratio
- at least an order of magnitude lower than local starbursts or AGN, similar to local ULIRGs.

Local starburst like SMGs without CII/OI deficient !

Sturm et al. 2010, A&A, 518, L36

Ivison et al. 2010, A&A 518, L35 L[CII]/Lbol is higher than in local ULIRGs but similar to local star-forming/starburst galaxies \Rightarrow powered by starburst clumps distributed ~2 kpc gions, \neq ULIRGs? SMGs are not simply scaled-up ULIRGs

[OIII] 88.356 um line

- 35 eV → hot stars (Teff > 36,000 K) required
- 164 K above ground level
- Critical density ~ 500 cm^-3

FIR extragalactic spectral line survey with ISO

- 88 galaxies (z<0.05) observed, 75% detected
- 2nd or 3rd brightest line (after [CII]and [OI])
- L_[OIII]/L_FIR ratio: 0.03 to 2%, median ~0.2% (Malhotra et al. 2001; Negishi et al. 2001; Brauher et al. 2008)

echelle grating spectrometer with 1x32 pix linear bolometer array for 350 and 450 um windows

Ferkinhoff et al. 2010, ApJ, 714, L147

Mkn 231: AGN-dominated ULIRG

- z=0.042 (DL=192 Mpc); one of the closest quasars
- L(IR)=4×10¹²Lo, the most luminous ULIRG in the IRAS Revised Bright Galaxy Sample
- Warm infrared colors
- Star-forming disk (radius ~ 500 pc) + absorbed X-ray nucleus
- Face-on, massive molecular gas disk, M(H2) ~ 5×10⁹ Mo

Mkn 231 SPIRE-FTS spectrum

SPIRE-FTS spectrum of M82, a pure starburst galaxy, is dominated by CO, no H₂O

PDR vs XDR: 4 major differences

- X-ray penetrate much larger column densities than UV photons
- Gas heating efficiency in XDRs is very high (10-50%), compared to PDRs (< 1%)
- Dust heating much more efficient in PDRs than in XDRs
- High ionization levels in XDRs drive ionmolecule chemistry over large column density

Heating source modeling: XDR vs PDR

- XDRs produce larger column densities of warmer gas
- Identical incident
 energy densities give
 very different CO
 spectra
- Very high-J CO lines are excellent XDR tracers
- Need good coverage of CO ladder

Spaans & Meijerink 2008

Can PDRs explain the CO ladder too?

- High-J CO lines can also be produced by PDRs, but with n=10^{6.5} cm⁻³ and G₀=10⁵, containing half of the molecular gas mass
- G₀=10⁵ only out to 0.3 pc from O5 star; then we must have half of the molecular gas and dust in 0.7% of volume
- With G₀=10⁵, 50% of the dust mass would be at 170 K
- [OH⁺] and [H₂O⁺] > 10⁻⁹ in dense gas requires efficient and penetrative source of ionization; PDR abundance factor 100 – 1000 lower
- → XDR strongly favoured

PDR/XDR model

Fingerprinting Ultraluminous Infrared Galaxies

PDR 1:

- > $n=10^{3.5}, G_0=10^2, R\sim 500 \text{pc}$
- Large scale molecular gas
- ▶ → Low-J CO, low H_2O lines

PDR 2:

- > $n=10^5$, $G_0=10^{3.5}$
- Small, dense SF clumps
- ➤ mid-J CO lines

> XDR:

- > n=10^{4.2}, F_X=28, R~150pc
- Circumnuclear XDR disk
- ▶ → High-J CO, OH⁺, H₂O⁺,
 - high H₂O lines

A pure PDR model explains CO ladder in M82

Loenen et al. 2010

- CO ladder drops at high J
- Combination of PDRs accounts for both the 12CO and 13CO lines
- Highest excitation component can be identified in line profiles

. **4**--**\$**--1200 10-15 2 10⁻¹⁶ 10-17 10-16 1300 Cm/M 10-17 $\log(n) = 3.5, \log(G_0) = 2.00$ $\log(n) = 5.0, \log(G_0) = 2.75$ $\log(n) = 6.0, \log(G_0) = 3.25$ total (ratio 70:29:1) 10⁻¹⁸

upper J level

10

12

14

More to come; Arp299A FTS spectrum

Summary: SAFARI+BLISS+ALMA

 Blind imaging-spectroscopic survey with SAFARI: up to z~2 ULIRGs/SMGs

Best suited for z~2 cluster studies

- Targetted sensitive spectroscopy with BLISS: up to z~4 ?? ULIRGs/SMGs we need BLISS !
 - Physical properties of ionized gas (PDRs, HII regions, coronal regions) with FIR fine structure lines
 - Very high-J CO
- Detailed (subarcsec or better resolution) imaging study of spectroscopically confirmed bigh a UUPCC/SMCC + molecular gas