Property of massive stars

because of this property, stars at the early universe are

strong UV radiation and stellar wind

massive stars provide strong energy through strong UV radiation and stellar wind, which cause the formation of

1.2 6

Aya KOSAKA(U. Tokyo), Hiroshi MATSUO(NAOJ), Masuo TANAKA(U. Tokyo), Hidenori TAKAHASHI(Gunma Astronomical Observatory)

-infrared spectroscopic observation around Eta with AKARI Fourier Transform Spectrometer

We have made observations with AKARI FIS-FTS (Far Infrared Surveyor - Fourier Transform Spectrometer) and [CII]158, [NII]122, [OIII]88µm intensity image of about 5'x10' field around Eta Car were obtained.

SPICA/SAFARI is equipped with FTS same as AKARI FIS-FTS. In this poster, we show the results of AKARI as an example of FTS observation and present the importance of large scale observation by using FTS.

AKARI/FIS-FTS

92

Eta Car and its surroundings

~ 150Mo

Humphreys et al. 1999

Luminosity ~5x10⁶ Lo

urrent Mass 90~100 Mo

HST	
200	С
the second second	Z Se
5″	

Eta Carinae is classified as LBVs (Luminous Blue Variables). It is considered that this bipolar shape of Eta Car was made by 18 . Eta Car became that bipolar shape. Total mass ejected at the eruption was estimated

ero Age Main quence Mass

short life time

 high mass-loss rate their mass-loss activities give out metals

HII regions PDRs and shocked regions

considered to be massive

to interstellar space

HII regions called Car-II are next to Eta Car.

	Wide-S	Wide-L
Wavelength Range (µm)	60-110	110-180
Detector	monolithic Ge:Ga	stressed Ge:Ga
Array size	3 x 20	3 x 15
pixel size (")	26.8 "	44.2″
beam size (major/minor)	44"/39"	57"/53"

Resolution Full-resolution mode : 0.36cm⁻¹

SPICA/SAFARI

Spectrometer of SAFARI is also FTS same as AKARI FIS-FTS.

SAFARI is suitable to observe diffuse components in the interstellar space because it has large field of view and FTS can sweep wide region at one time.

Comparison with other FIR spectrometer

2 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	5	A CONTRACTOR OF	500	
0.0	2.0	4.0	6.0	8.0

ADI Docult

 sharp peak about 3x10⁻⁷ [W/m²/sr] is shown at the position of Eta Car diffuse gas around Eta Car are situated within a 2' radius

Ionization potential

radial profile around Eta Car \rightarrow

wavelength Ionization potential transition [OIII] ${}^{3}P_{1} \rightarrow {}^{3}P_{0}$ 88µm 35.12eV • peak about 1.4x10⁻⁵ [W/m²/sr] is situated at the edge of Car-II, which is suggested other ionizing source line intensity are higher than that of [CII] and [NII] by a order of magnitude even for the diffuse components (there is no data at the position of Eta Car due to saturation)

	AKARI/FIS-FTS	Herschel/PACS	SPICA/SAFARI	
Wavelength range [µm]	60-110/110-180	55-210	34-60/60-110/110-210	Re fo
Spectrometer	FTS	image slicer + grating	FTS	
Detector	Ge:Ga	Ge:Ga	TES bolometer	w Si
Field of view	1.4'x9.8'/2.4'x12.2'	47″x47″	1.9'x1.9'	be
Sensitivity [W/m ²]	10 ⁻¹⁴ ~10 ⁻¹⁵	2-5x10 ⁻¹⁸	2x10 ⁻¹⁹	ra ra
Resolution (٨/Δ٨)	450-150	5400-900	2000 @100µm	

equirements of dynamic range r SAFARI is estimated based on (ARI [OIII] observation. III] peak intensity 2x10⁻¹² [W/m²] thin averaged beam width 45". gnal intensity for SPICA with am size of ~10" is estimated 1x10⁻¹³[W/m²]. So dynamic nge of $1 \times 10^{-13} / 2 \times 10^{-19} = 5 \times 10^{5}$ required !!