

SPICAペイロードモジュール(PLM)システムの

概念検討状況

小川博之、篠崎慶亮、水谷忠均、中川貴雄、松原英雄、後藤健、 竹内伸介、川田光伸、山脇敏彦、佐藤洋一、杉田寛之、SPICAチーム(JAXA)

〇検討の背景: 国際役割分担の見直しとESA Cosmic Vision M5への提案

ESA Cosmic Vision Mクラスに応募するにあたり、欧州コミュニティと日本SPICAチームで協議し、日本が打ち上げロケッ ト・機械式冷凍機・観測装置の一つ(SMI)に加えペイロードモジュール(PLM)全体の開発・試験検証を分担することを前提に検討した。欧州側分担部分と日本側分担部分のインターフェース簡素化のため、当初欧州側担当のサービスモ ジュール (SVM) に搭載予定であった日本側担当の機械式冷凍機をPLM側に搭載することを検討することになった。PLM に機械式冷凍機搭載部分を設けた形で、検討結果を提案書にまとめ、欧州側と共同でESA Cosmic Vision M5 に応募した。

OPLM技術成立性の概念検討の目標

平成28年度における検討のスコープは:

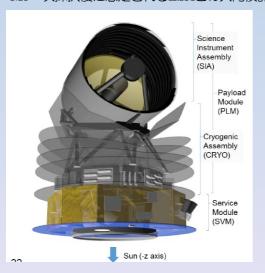
JAXA担当範囲外とのI/F分界に係る問題点・不合理点の識別。

JAXA担当範囲のWBS・スケジュール試験検証計画、コスト再見積もり。 ペイロード部冷却系の概念検討・設計。熱的・構造的成立性の検討。

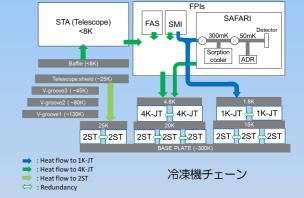
機械式冷凍機搭載部分の検討。

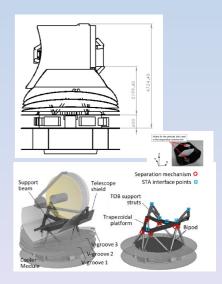
OPLM熱構造検討の前提

SIA (Science Instruments Assembly): 口径2.5mの望遠鏡を温度8K以下

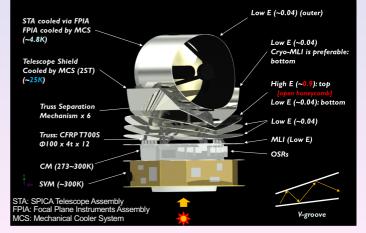

SVM: PlanckのSVMを前提とする PLM: Planckで実績のあるV-grooves+冷凍機で冷却するTelescope

(active) shield構造


旧SPICAの冷凍機+Telescope(active) shield冷凍機 機械式冷凍機搭載部分をSVMの上に設ける


〇課題と今後の予定

現状案の成立性(技術面かつプログラム面)の確保が課題。今年6月の M5一次採択後に想定されるESAとの共同検討に備えて準備をおこなう。


構成・仕様				
構成	材質	備考		
望遠鏡	SiC	ESA担当		
観測装置	Al			
シールド	AIハニカム	・Active Shield (2STで冷却) ・V-Groove		
支持構造	低熱伝導 CFRP	・望遠鏡支持トラス ・フレーム ・バイポッド ・分離ばね (軌道上でフレーム/ バイポッド間を分離ば ねで切り離し、熱流入 を減少)		

To 4K-JT: 29.4 0.5 ↑	Conduction through bipods JT pipe Support 2.3	FPIA heat load 16.8	Unit: mW
4.8K 0.5 To 2ST: 128.1	4.2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		SIA
25K (Avg.) 9.6 620 39K (Avg.)	13 1.2 15	66.6 46.3	Telescope shield
164 1634 78K (Avg.)	70 158↑ 35 119	486 159	VG2 VG1
13014	384 ↑-1.4 798 ↑ 966	⁴ 774 1196	
131K (Avg.) To space 10450	835 1-14 11077	355 1528	7 CM
273K	from/to (tl	eat load Radiatio hrough arness)	VG: V-groove CM: Cooler Module

