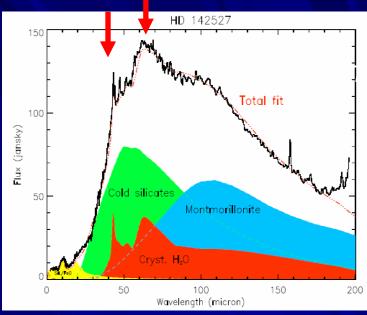
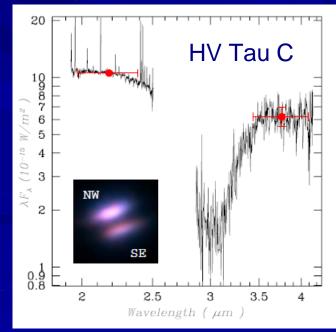

星周円盤のH2O氷ダスト観測

本田充彦(神奈川大学)、 井上昭雄(大阪産業大学)、 岡明憲、中本泰史(東京工業大学)、 他多くの皆さま…



Why H₂O ice ? major solid matter in disk ice and silicate $-H_2O$ is dominant in ice Role of H₂O ice grains in planet formation enable formation of cores of gas giants ($\sim 10M_{\rm F}$) - First planetesimals / protoplanets formed at snow line ? (Lecar+2006) Link to origin of ocean on rocky planets


- Very short life time due to photodesorption by UV photons (e.g. Grigorieva et al. 2007)
- 2. Thermal history of icy material from molecular cloud to our solar system
 - Crystallinity of (water) ice especially in debris disks and solar system (comets and EKBOs)
- 3. Where is the snow line ?
 - Observationally, little is known
 - Is it consistent with the theoretical predictions?

H₂O ice IN disks

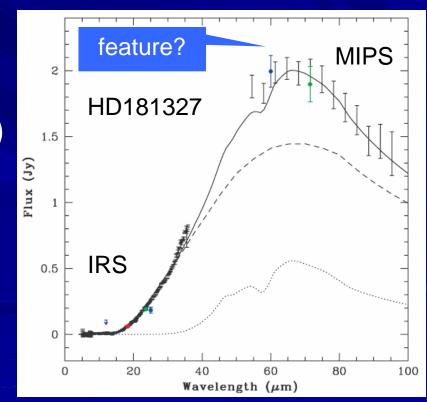
Observations are limited Protoplanetary disks $-44,62\mu m$ emission features (Lattice mode, Malfait et al. 1999) ■ HD142527 + a few source - 3.1µm absorption feature (OH stretching mode) ■ HKTauB, HVTauC (Terada+2007) CRBR2422.8-3423 (Pontoppidan+2005) Debris Disks - No direct detection except for Chen+08

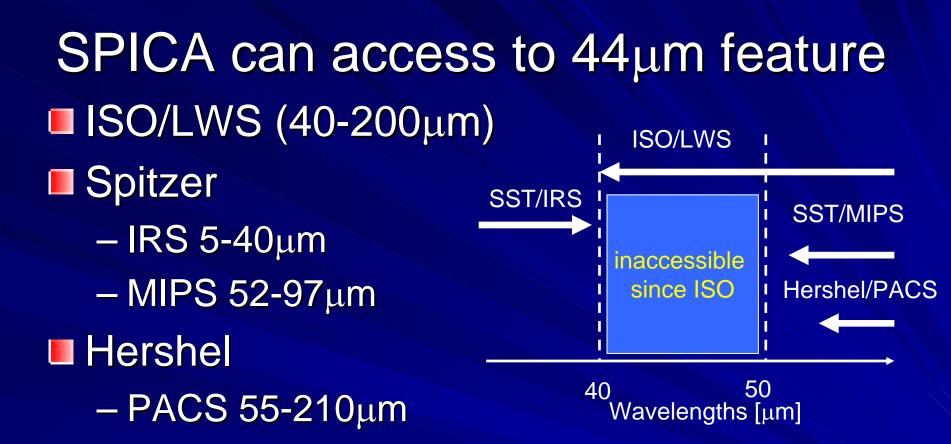
(Malfait et al. 1999)

Ice in debris disk ?

Possible 62µm feature to HD181327 (Chen+2008)

– F5/F6V, 50.6pc, 12Myr (βPic group)


- SST/IRS,MIPS spectra


photodesorption lifetime

 1400 yr (1.5 µm H₂O ice)
 Another evidence for grain replenishment

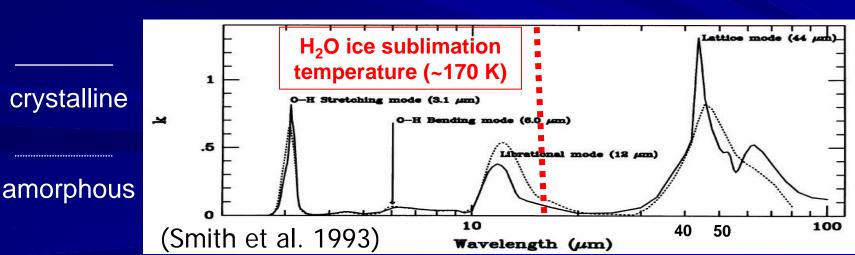
44µm feature is desired

for robust detection

SPICA can observe $44\mu m$ feature since ISO ! Hershel/PACS can access $62\mu m$ feature, but this feature comes from only crystalline H₂O ice

- Very short life time due to photodesorption by UV photons (e.g. Grigorieva et al. 2007)
- Thermal histroy of icy material from molecular cloud to our solar system
 - Crystallinity of (water) ice especially in debris disks and solar system (comets and EKBOs)
- 3. Where is the snow line ?
 - Observationally, little is known
 - Is it consistent with the theoretical predictions?

- Very short life time due to photodesorption by UV photons (e.g. Grigorieva et al. 2007)
- 2. Thermal histroy of icy material from molecular cloud to our solar system
 - Crystallinity of (water) ice especially in debris disks and solar system (comets and EKBOs)
- 3. Where is the snow line ?
 - Observationally, little is known
 - Is it consistent with the theoretical predictions?


difficulties for detecting H₂O ices

Ideal for unbiased

uniform study

3.1µm feature

- Famous, but observable in absorption only !
- light source is needed
- Blending with other ices (e. g. NH3)
- 12µm feature
 - Blending with strong 10µm silicate feature
- 44, 62µm features
 - Limited obs. Opportunities
 - Absorption or **Emission** !

Current understanding of H₂O ice crystallinity evolution

Silicate dust evolution has been well-established
Icy dust crystallinity evolution is still unclear

	ISM mol. cloud	Protoplane tary disks	Debris disks	Solar sys. comets
Silicate T~1000K	A	A+C	A+C	A+C
H ₂ O ice T=110-140K	A	A?+ <mark>C?</mark>	C???	C? A?

A: amorphous form, C: crystalline form

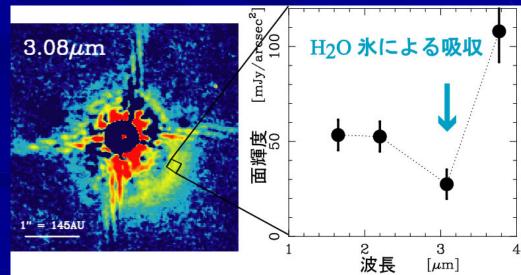
Comparison with model predictions

Kouchi+94 discussed crystallinity evolution of H₂O ice from molecular cloud to solar system

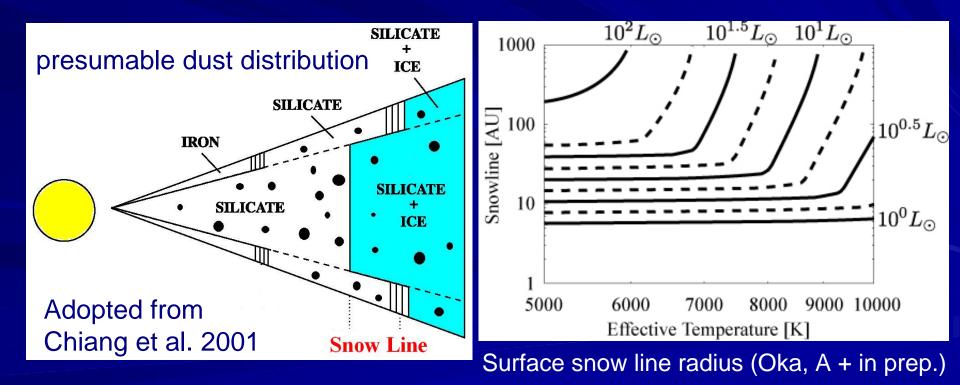
Need more sample to establish crystallinity evolution

	ISM mol. cloud	Protoplane tary disks	Debris disks	Solar sys. comets
Kouchi+94 prediction	A	C(+A)	С	C
H ₂ O ice T=110-140K	A	A?+ <mark>C</mark>	C???	C? A?

A: amorphous form, C: crystalline form


- Very short life time due to photodesorption by UV photons (e.g. Grigorieva et al. 2007)
- 2. Thermal histroy of icy material from molecular cloud to our solar system
 - Crystallinity of (water) ice especially in debris disks and solar system (comets and EKBOs)
- 3. Where is the snow line ?
 - Observationally, little is known
 - Is it consistent with the theoretical predictions?

Spectroscopy of disk scattered light


Detection of H₂O ice 3.1µm absorption by scattered light "spectroscopy" (Honda+09)

- H₂O ice grains present at r>140AU
- There should be ice-free inner region
- Low resolution spectra will give us much more information

 on grain properties
SCI should be a powerful tool !

■ Snow line - mid-plane → a few ~ a few tens AU - Surface → 10 ~ 100 AU

Feasibility evaluation on snow line detection with SCI

- SCI IWA ~3.3 λ/D=0.68" @ 3.5μm
- Protoplanetary disks around Herbig Ae/Be stars
 - Typical distance to HAeBe is 100pc (or more) mid plane : $10AU \rightarrow 0.1$ " surface : $50AU \rightarrow 0.5$ "
 - Challenging observations...
- Nearby debris disks around Vega-like stars
 - βPic (20pc)
 - 90-100AU (Pantin+1997) → 4.5"-5.0"
 - OK !
 - but presence of icy grains is not confirmed
 - Spectroscopy is strongly desired !

SCI spectroscopy of disk scattered light is still important ! Scattered light spectroscopy $\sim 3\mu m < \lambda$ is very difficult for ground-based facility - Need for observations from space ! Absorption features CH₄ Silicat $-H_2O$ ice @ 3.1µm 10² нсоон $-CO_2$ ice @4.27µm CO. Silicate Flux (Jy) Ton - CO ice @4.67µm CH₃OH + NH₄⁺? CH₃OH - etc NH₃? ■ CO₂ snow line C0, ,H₂0 W 33A CH₃OH -70-300 AU 10^{-1} 3 5 10 20

Wavelength (μm)

Summary

- 1. Can icy grains survive in debris disks?
 - SPICA FIR spectroscopy of emission from debris disk will provide conclusive answers (presence of 44 and 62µm features)
 - SCI spectroscopy of scattered light is also a powerful tool to investigate ice absorption
- 2. Thermal histroy of icy material from molecular cloud to our solar system
 - Systematic FIR spectroscopic study to investigate H₂O ice feature will establish the evolutional picture
- 3. Where is the snow line?
 - Very challenging for protoplanetary disks
 - Feasible for debris disks, but presence of ice is not clear for the moment