Infrared coronagraph for SPICA

SPICA Science Workshop
Jun 1-2, 2009
Koshiba hall, University of Tokyo

K. ENYA, T. Nakagawa, H. Kataza, T. Kotani (ISAS/JAXA),
K. Haze (SOUKENDAI, ISAS/JAXA), S. Higuchi (Univ. of Tokyo, ISAS/JAXA),
T. Miyata, S. Sako, T. Nakamura (IoA/Univ. Tokyo), M. Tamura, J. Nishikawa,
T. Yamashita, N. Narita, H. Hayano (NAOJ), Y. Itoh (Kobe Univ.), T. Matsuo(JPL),
M. Fukagawa, H. Shibai (Osaka Univ.), M. Honda (Kanagawa Univ.),
N. Baba, N. Murakami (Hokkaido Univ.),
L. Abe (Nice Univ), O. Guyon (NAOJ/SUBARU), M. Venet (Marseille Univ.),
T. Yamamura (Optcraft), P. Bierden (BMC), SPICA coroangraph team
Direct observation of exo-planets

Importance
- Approach to a fundamental question:
 - How were the planets born?
 - How did they evolve?? How about life???

Difficulty
- High contrast and small angular separation between a planet and the parent star.

No longer dream
- Next step is systematic characterization.

(Images and text related to exoplanet observations and characterizations, including references to Marois et al. 2008, Kalas et al. 2008, and Traub & Jucks 2002.)
Relating presentation: Thanks to big effort by SCI science team

- Takami et al:
 A review of galactic science

- Itoh, Fukagawa et al.:
 Direct observation of exo-planets

- Narita, Yamashita et al:
 Monitor observation of planetary transit

- Honda et al:
 Snow line
SPICA as a platform of coronagraph

Vs. ground based telescope (Large aperture, quick realization)
- Free from air turbulence
- Infrared advantage in contrast
- Continuous wavelength coverage in infrared

Vs. TPF, DARWIN, ... (Ultimate performance)
- SPICA will be launched earlier

Vs. JWST (6.5m space telescope, 2013 launch: the most powerful rival)
- ~x10 higher contrast by monolithic mirrors and active optics
- Capability of coro.+spectroscopy (JWST doesn’t have)
What can SCI reveal?

On going work
- Quantitative estimation and comparison of performance
- Trial selection of concrete target (talk by Itoh, Fukagawa)

Next step: combining them, imaginary legacy survey
- More detail estimation of observation time, improvement of observation strategy, feedback to instrumentation, stronger justification for SCI.

Good targets!
(Marois et al. 2008)

Thanks to T. Matsuo's big contribution
Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core wavelength (λ)</td>
<td>3.5–27 micron (shorter wavelength is optional)</td>
</tr>
<tr>
<td>Observation mode</td>
<td>w/woCoronagraph, Imaging/Spectroscopy</td>
</tr>
<tr>
<td>Coronagraphic mode</td>
<td>binary shaped pupil mask</td>
</tr>
<tr>
<td>Inner working angle (IWA)</td>
<td>~3.3λ/D *</td>
</tr>
<tr>
<td>Throughput</td>
<td>~20%</td>
</tr>
<tr>
<td>Outer working angle (OWA)</td>
<td>16λ/D</td>
</tr>
<tr>
<td>Contrast</td>
<td>10$^{-6}$ @PSF (~10$^{-7}$ after subtraction)</td>
</tr>
<tr>
<td>Detector</td>
<td>1k x 1k Si:Asarray (InSb detector is optional)</td>
</tr>
<tr>
<td>Field of View</td>
<td>1\times1\times</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>~20 and ~200</td>
</tr>
<tr>
<td>Filter</td>
<td>Band pass filters</td>
</tr>
<tr>
<td>Disperser for spectroscopy</td>
<td>transmissive devices (e.g. grism) in filter wheel</td>
</tr>
</tbody>
</table>

Baseline specification is presented. Further improvement is ongoing toward the best, final solution.
Compact solutions are obtained.

(\(\sim13\text{kg for housing@100Hz stiffness, } \sim12\text{kg for optics, mechanics, electronics}\))

Further improvement is ongoing toward the best, final solution.
Coronagraph method

- Binary shaped pupil mask coronagraph
 - Advantage 1: Very robust against pointing error.
 - Advantage 2: Achromatic work (except PSF size effect)
 - continuous spectrum
 - Challenge: High precision fabrication is needed

- Laboratory experiments succeeded
 - Demo. of principle with masks on substrate → 6×10^{-8}
 - Demo. of free standing mask for MIR coronagraph → 7×10^{-7}

- Improvement of mask design is ongoing.
Cryogenic active optics

- **Cryogenic deformable mirror (DM)**
 - MEMS DM: compact, large format (many channels)
 - Demo. with a prototype device succeeded.
 - Big issue: Wire harness

- **Cryogenic tip-tilt mirror**
 - Baseline design uses piezo actuators.
 - Collaboration with IoA (Miyata, Sako, Nakamura)
 - Should be considered in total attitude control system
 - Current the most challenging issue for SCI.
Observation of planetary transit

- Important by-product
 (→ talk by Narita, Yamashita)
 - non-coronagraph mode as a fine camera & spectrometer is useful.

- SPITZER pioneered
 - Characterization of Infrared spectral features of exo-planets
 - Stability is essential.

- SPICA can be better than SPITZER

- JWST is the most powerful rival
 - Internal calibrator is considered
Summary

- We are performing R&D for SCI

- Some big progress
 - Scientific study
 - Technical challenge
 - Constraints of resource
 - Concrete design of the instrument

 Still more progress is needed.

- Teaming
 - Why we have to hurry?
 - Participation for Scientific study, instrumentation
 - Please feel free to contact to enya@ir.isas.jaxa