Infrared coronagraph for SPICA

SPICA Science Workshop Jun 1-2, 2009 Koshiba hall, University of Tokyo

K. ENYA, T. Nakagawa, H. Kataza, T. Kotani (ISAS/JAXA), K. Haze (SOUKENDAI, ISAS/JAXA), S. Higuchi (Univ. of Tokyo, ISAS/JAXA), T. Miyata, S. Sako, T. Nakamura (IoA/Univ. Tokyo), M. Tamura, J. Nishikawa, T. Yamashita,N. Narita, H. Hayano (NAOJ), Y. Itoh (Kobe Univ.), T. Matsuo(JPL), M. Fukagawa, H. Shibai (Osaka Univ.), M. Honda (Kanagawa Univ.), N. Baba, N. Murakami(Hokkaido Univ.), L. Abe (Nice Univ), O. Guyon (NAOJ/SUBARU), M. Venet (Marseille Univ.), T. Yamamuro (Optcraft), P. Bierden (BMC), SPICA coroangarph team

Direct observation of exo-planets

Improtance

 Approach to a fundamental question: How were the planets born? How did they evolve?? How about life???

n Difficulty

- High contrast and small angular separation between a planet and the parent star.

n No longer dream

- Next step is systematic characterization.

We are performing R&D for SPICA coronagraph instrument (SCI)

Relating presentation: Thanks to big effort by SCI sicence team - Takami et al: A review of galactic science - Itoh, Fukagawa et al.: **Direct observation of exo-planets** - Narita, Yamashita et al: Monitor observation of planetary transit - Honda et al: Snow line

SPICA as a platform of coronagrpah

- Vs. ground based telescope (Large aperture, quick realization)
 - Free from air turbulence
 - Infrared advantage in contrast
 - Continuous wavelength coverage in infrared
- **n** Vs. TPF, DARWIN, ... (Ultimate performance)
 - SPICA will be launched ealier

No. JWST (6.5m space telescope, 2013 launch: the most powerful rival)

- ~x10 higher contrast by monolithic mirrors and active optics
- Capability of coro.+spectroscopy (JWST does'nt have)

SCI has significant advantage over JWST

What can SCI reveal?

On going work

- Quantitative estimation and comparison of performance
- Trial selection of concrete target (\rightarrow talk by Itoh, Fukagawa)
- Next step: combining them, imaginary legacy survey
 - → more detail estimation of observation time, improvement of observation strategy, feedback to instrumentation, stronger justification for SCI.

Specifications

Parameter	Specification
Core wavelength ()	3.5 -27 micron (shorter wavelength is optional)
Observation mode	w/wo Coronagraph, Imaging/Spectroscopy
Coronagraphic mode	binary shaped pupil mask
Inner working angle (IWA)	$3.3 \times /D^*$
Throughput	20%
Outer working angle (OWA)	16 × / <i>D</i>
Contrast	10 ⁻⁶ @PSF (10 ⁻⁷ after subtraction)
Detector	1k × 1k Si:As array (InSb detector is optional)
Field of View	1' x 1'
Spectral resolution	20 and 200
Filter	Band pass filters
Disperser for spectroscopy	transmissive devices (e.g. grism) in filter wheele

* *D* = 3.5m

n Baseline specification is presented.n Further improvement is ongoing toward the best, final solution.

Optical layout

Compact solutions are obtained.

(~13kg for housing@100Hz stiffness, ~12kg for optics, mechanics, electronics)

n Further improvement is ongoing toward the best, final solution.

Coronagraph method

- Binary shaped pupil mask coronagraph
 - Advantage1: Very robust against pointing error.
 - Advantage2: Achromatic work (except PSF size effect)
 - → continuous spectrum
 - Challenge: High precision fabrication is needed
- Laboratory experiments succeeded
 - Demo. of principle with masks on substrate \rightarrow 6x10⁻⁸
 - Demo. of free standing mask for MIR coroapgraph $\rightarrow 7x10^{-7}$

e.g., Enya et al. (2007), Haze et al.(2008), Enya et al.(2008) Improvement of mask design is ongoing.

Example of mask design (Enya et al. 2009)

Cryogenic active optics

- Cryogenic deformable mirror(DM)
 - MEMS DM: compact, large format (many channels)
 - Demo. with a prototype device succeeded.
 - Big issue: Wire harness
- n Cryogenic tip-tilt mirror
 - Baseline design uses piezo actuators.
 - Collaboration with IoA (Miyata, Sako, Nakamura)
 - Should be considered in total atitude control system
 - Current the most challenging issue for SCI.

Observation of planetary transit

Important by-product $(\rightarrow \text{talk by Narita, Yamashita})$ - non-coronagraph mode as a fine camera & spectrometer is useful. SPITZER pioneered - Characterization of Infrared spectral features of exo-planets - Stability is essential. n SPICA can be better than SPITZ **n** JWST is the most powerful rival - Internal calibrator is considered

Swein et al. (2008)

Summary

We are performing R&D for SCI Some big progress

- Scientific study
- Techinical challenge
- Constraints of resource
- Concrete design of the instrument

Still more progress is needed.

n Teaming

- Why we have to hurry?
- participation for Scientific study, instrumentation
- Please feel free to contact to enya@ir.isas.jaxa