SPICA Science Workshop 2009 Mid-Infrared Molecular Hydrogen **Emission from Protoplanetary Disks Hideko Nomura** (Kyoto University)

§1 Introduction

From protoplanetary disk to planets

地球型惑星形成

Dust size growth (e.g., Hayashi et al. 1985) & settling 原始惑星系円盤 Planetesimal 微惑星の形成 formation enter of the first of the second s 微惑星の合体成長 Collisional growth, A CONTRACTOR OF A CONTRACTOR O **Planet formation** 木星型惑星形成 **Gas dispersal** \rightarrow Planetary (From Tokyo Tech. Inst. HP) system formation

Dispersal of Dust Grains in PPDs

Observation of Gas Mass in PPDs

H₂ Excitation, H₂ Line Transition

§2 H₂ Line Emission from **Protoplanetary Disks** - Observations -

H₂ Line Obs. towards TTSs (NIR)

- **Detection of `Quiescent' lines** $F \sim 10^{-15}$ erg/s/cm², $\Delta v \sim 10$ -30km/s
- \rightarrow H₂ lines originating from disks
- (cf. UV lines : Herczeg et al. 2002) GG Tau, TW Hya, LkCa 15, DoAr 21 IRTF/CSHELL (R=21,500) NOAO/Phoenix (R~60,000)
- $1.20 + H_{2} + H_{2}$
- (Weintraub et al. 2000, Bary et al. 2002, 2003) LkHa 264
- Subaru/IRCS (R=20,900) (Itoh et al. 2003)
- VLT/CRIRES (R=45,000) (Carmona et al. 2007)
- ECHA J0843
- Gemini/Phoenix (R=62,400) (Ramsay Howat & Greaves 2007) 5 T Tauri stars & HD97048 in Cha I
- Gemini/Phoenix (R~60,000) (Bary et al. 2008)

H₂ Line Obs. towards TTSs (NIR)

1-0 S(1)@2.12µm Gemini/NIFS (R~5300) (Beck et al. 2008)

H₂ Line Obs. towards TTSs (MIR)

0.5

0.0

GO Tau

@28um

ISO observations

GG Tau, GO Tau, LkCa 15, etc. 0.4 $F \sim (2-7) \times 10^{-14} \text{ erg/s/cm}^2$ ISO/SWS (R~2,000-2,400) (Thi et al. 1999,2001) **Ground-based telescopes**

16.98 17.02 17.06 17.10 Wavelength (µm)

- GG Tau, DG Tau, etc., S(1)@17µm, S(2)@12µm
- IRTF/TEXES (R~40,000-83,000) (Richter et al. 2002)
- LkCa 15, etc., S(1)@17µm

(Lahuis et al. 2007)

- Subaru/COMICS (R~5,000) (Sako et al. 2005), etc.
- Spitzer observations 6 YSOs
- S(0)@28μm, S(1)@17μm, S(2)@12μm, S(3)@9.7μm Spitzer/IRS (R=600) F~(0.3-7)x10⁻¹⁴erg/s/cm² HZ
- Sz102 30 6.7 17.0 17.3 Wavelength $[\mu m]$

H₂ Line Obs. towards HAe (MIR)

§ 3 H₂ Line Emission from **Protoplanetary Disks** - Modelling -

Thermal Processes in PPDs

H₂ Lines from HAe & T Tauri Disks

$S(0)@28\mu m, S(1)@17\mu m, S(2)@12\mu m, S(4)@8\mu m$			
	Obs. (AB Aur)	HAe disk	T Tauri disk
S(0)		0.3 x 10 -15	0.01 x 10 ⁻¹⁵
S(1)	(6 – 11) x 10 ⁻¹⁵	7 x 10 -15	0.2 x 10 ⁻¹⁵
S(2)	(5 – 9) x 10 ⁻¹⁵	8 x 10 -15	0.1 x 10 -15
S(4)	15 x 10 -15	13 x 10 -15	0.3 x 10 -15
		\downarrow	[erg/s/cm ²]
SPICA \rightarrow Survey of H ₂ lines from T Tauri disks			
\rightarrow Understand das dispersal time of PPDs			

<mark>S(0)</mark>@28μm (vs. S(1)@17μm, S(2)@12μm) ?

Best gas mass tracer

small line flux ('.'small Einstein coefficient)

§ 4 Summary

Mid-IR H₂ lines from protoplanetary disks

- Good tracer of gas mass in disks
- High $\Delta\lambda/\lambda$ obs. by Gemini/TEXES, VLT/VISIR Detection of quiescent lines of mid-IR H₂ emission from H Ae disks
- SPICA + High Dispersion Spectrograph

 → H₂ line detection from T Tauri disks
 → Understand gas dispersal time
 of protoplanetary disks
- * Obs. of line emission of molecules originating from grain surface reactions