Formation of Dust in Supernovae and Its Ejection into the ISM

Takaya Nozawa

(IPMU, Univ. of Tokyo)

Collaborators;

T. Kozasa (Hokkaido Univ.), N. Tominaga (Konan Univ.),

K. Maeda (IPMU), H. Umeda (Univ. of Tokyo),

K. Nomoto (IPMU/Univ. of Tokyo)

1. Introduction

1-1. Background

CCSNe are main sources of interstellar dust?

- formation of dust in the ejecta of SNe
- destruction of dust in the shocked gas of SNRs
- · Observations of dust-forming SNe
 - → no information on composition and size of dust except for SN 2006jc (Sakon+2009) and SN 2004et (Kotak+2009)
 → Mdust <10⁻³ Msun
- Theoretical studies
 - → Mform = 0.1-1 Msun for SNe II various dust species with 0.001-1 µm

(Todini & Ferrara 2001; Nozawa et al. 2003)

→ Msurv = 0.01-0.8 Msun for nH,0=0.1-10 cm⁻³ (Bianchi & Schneider 2007; Nozawa et al. 2007)

1-2. Aim of our study

Comparison of models with IR observations of SNRs

- erosion by sputtering and collisional heating
- → properties of dust and density structure in CSM

What size and how much amount of dust are injected from CCSNe into the ISM?

- Dust formation and evolution in SN with no envelope
 - <u>30-40% of CCSNe explode as SNe lb/c and SN llb</u> (Prieto et al. 2009; Smartt et al. 2008; Boissier & Prantzos 2009)

How do formation and destruction processes of dust depend on the type of CCSNe?

1-3. Outline

• Formation of dust in the ejecta of Type IIb SN

→ composition, size, and mass of newly formed dust

· Destruction of dust in the hot gas of the SNR

→ What fraction of dust grains in the SN ejecta can survive and is injected into the ISM?

Thermal emission from shock-heated dust

→ comparison with IR observations of Cas A SNR

→ constraint to gas density in the ambient medium

1-4. Cassiopeia A SNR

Cas A SNR

- age: ~330 yr (Thorstensen et al. 2001)
- distance: d=3.4 kpc (Reed et al. 1995)
- shock radius
 forward shock : ~150" (~2.5 pc)
 reverse shock : ~100" (~1.7 pc)
 dM/dt ~ 2x10⁻⁵ (vw/10 km/s) Msun/yr
 (Chevalier & Oishi 2003)

- oxygen-rich SNR

dense O-rich fast-moving knots (O, Ar, S, Si, Fe ...) thermal emission from ejecta-dust

→ Mdust = 0.02-0.054 Msun (Rho et al. 2008)

- SN type : Type IIb (Krause et al. 2008)

2. Formation of dust in Type IIb SN

2-1. Dust formation calculation

2-2. Composition and mass of dust formed

dust species	$M_{\mathrm{d},j}~(M_{\odot})$	$M_{\mathrm{d},j}/M_{\mathrm{d,total}}$
С	7.08×10^{-2}	0.423
Al_2O_3	6.19×10^{-5}	3.7×10^{-4}
$\mathrm{Mg}_2\mathrm{SiO}_4$	1.74×10^{-2}	0.104
MgSiO ₃	5.46×10^{-2}	0.326
SiO_2	1.57×10^{-2}	0.094
MgO	2.36×10^{-3}	0.014
FeS	1.47×10^{-3}	0.009
Si	5.07×10^{-3}	0.030
total	0.167	1

Mass of dust formed

condensation time

- Total mass of dust formed : 0.167 Msun in SN IIb 0.1-1 Msun in SN II-P
- different species of dust can condense in different layers
- condensation time: 300-700 days

2-3. Radius of dust formed in the ejecta

Grain radius \rightarrow > 0.01 µm for SN IIP \rightarrow < 0.01 µm for SN IIb

Dust grains formed in Hdeficient SNe are small

3. Evolution of dust in Type IIb SNR

3-1. Calculation of dust evolution in SNRs

Model of calculations

(Nozawa et al. 2006, 2007)

- ejecta model
 - hydrodynamic model for dust formation calculation
- CSM gas density
 - $n_{\rm H} = 1.0$ and 10.0 cm⁻³
 - $n_{H}(r)$ M / (4 πr^{2} vw) g/cm⁻³ (M = 2x10⁻⁵ Msun/yr)
- treating dust as a test particle
 - erosion by sputtering
 - deceleration by gas drag
 - collsional heating
 - → stochastic heating

3-2. Evolution of dust in Type IIb SNR

3-3. Time evolution of dust mass

Newly formed dust grains in the ejecta are completely destroyed in the shocked gas within the SNR

Core-collapse SNe with the thin outer envelope cannot be main sources of dust

4. Thermal emission of dust in SNRs

4-1. Thermal emission from dust in the SNR

- · thermal radiation from dust \leftarrow temperature of dust
- equilibrium temperature of dust in SNR is determined by collisional heating with gas and radiative cooling
 H (a, n, T_g)= Λ(a, Q_{abs}, T_d) → thermal emission
- small-sized dust grains (< 0.01 µm) → stochastic heating

4-2. Time evolution of IR thermal emission (1)

4-3. Time evolution of IR thermal emission (2)

4-4. Time evolution of IR SEDs for Cas A SNR

4-5. Dependence of IR SED on ambient density

4-6. Contribution from circumstellar dust

<u>Summary</u>

- 1) <u>The radius of dust formed in the ejecta of Type IIb SN is</u> <u>quite small (< 0.01 μ m)</u> because of low ejecta density
- 2) Small dust grains formed in Type IIb SN <u>cannot survive</u> destruction in the shocked gas within the SNR
- 3) Model of dust destruction and heating in Type IIb SNR to reproduce the observed SED of Cas A is Md,eje = 0.06 Msun, Md,ism = 0.03-0.07 Msun dM/dt = 6.6x10⁻⁵ Msun/yr
- 4) IR SED reflects the destruction and stochastic heating
 → properties (size and composition) of dust
 → density structure of circumstellar medium