Finding supernovae at the reionization era with Subaru and WFIRST

Takashi Moriya National Astronomical Observatory of Japan

Exploring the early Universe with supernovae

A classic tool: Type la supernovae

Exploring the early Universe with supernovae

A new class of bright supernovae: superluminous supernovae

Rest-frame wavelength (Å)

Exploring the early Universe with supernovae

- Predicted bright supernovae: pair-instability supernovae
 - they probably appear in the early Universe
 - metal poor environment required
 - first stars between ~150 Msun and ~250 Msun

High-redshift supernovae

- Highest redshift supernovae so far (Cooke et al. 2012)
 - z = 3.9
 - found by CFHT/MegaCam
 - no supernova spectrum, redshift from host galaxy spectroscopy

High-redshift supernova survey with Subaru/HSC

- ・ Subaru HI-Z sUpernova CAmpaign (SHIZUCA, 静か 'quietness')
 - z = 2.399 (spectroscopically confirmed) and beyond!

Moriya et al. (2018)

Limits of optical surveys

Transient survey in WFIRST

• WFIRST transient survey plan in Spergel et al. (2015)

Finding superluminous supernovae with WFIRST

• Expected brightness of high-redshift superluminous supernovae

Tanaka, Moriya, & Yoshida (2013)

Towards the reionization era: rate estimates

Towards the reionization era: rate estimates

- Superluminous supernova detection expectation at z > 6
 - + pair-instability supernovae!

z > 10: towards the first supernovae

Selecting z > 6 supernovae using Subaru/HSC

- high-redshift supernovae are very faint in optical
 - if we have deep optical imaging simultaneously, z > 6 supernovae will not be detected in optical: efficient candidate selection
 - e.g., "z drop" supernovae are z > 6 candidates
 - + other information (e.g., host)

Why Subaru/HSC?

- 27 mag limits in optical is desired
 - LSST will not go down to 27 mag in a single epoch
- Subaru/HSC can provide a VERY deep optical limits in each epoch
 - 27 mag in z band: \sim 1 night/1.8 deg2 for S/N = 5
 - ~ 3 nights for 5 deg2 (deep SN field)
 - x several epochs (~ 10 nights in total)

Summary

- Supernovae at the reionization era (!) can be discovered with WFIRST + Subaru/HSC
 - WFIRST will find ~ 10 supernovae at z > 6 in the deep SN layer
 - valuable information on massive star formation in the early Universe can be obtained!
- coordinated very deep observations with Subaru/HSC
 - look for "z drop" transients, for example
 - 27 mag for 5 deg2 in z band x several epochs: ~ 10 nights
 - difficult with LSST
 - possible follow up by TMT and JWST