Studying Cosmic Dawn with WFIRST and Subaru

WFIRST can address all three top level goals of the New Worlds, New Horizons Decadal Survey Report: Cosmic Dawn, New Worlds, and Physics of the Universe.

• WFIRST’s dark energy surveys address Physics of the Universe
• WFIRST’s microlensing & coronagraphic surveys address New Worlds
• WFIRST’s Guest Observer & Guest Investigator Program will prove equally compelling for studying Cosmic Dawn.
Ways to Study Reionization

• Look for the ionizing sources, estimate ionizing photon production, and compare to requirements for (re)ionization.
 – Galaxies
 – Quasars [or AGN more generally]

• Look for evidence of neutral gas and/or evidence of free electrons.
 – Lyman alpha galaxy statistics
 – Quasar spectroscopy
 – 21 cm emission

What can a 2.4m space telescope do?

Lyman break galaxies with HST slitless grism redshifts from Malhotra et al 2005

Mellema, Iliev, Pen, Merz, Shapiro, & Alvarez: reionization simulation
Deep Slitless Spectroscopy from Space

HST slitless spectroscopy: Deep programs, looking for Lyman break and Lyman alpha galaxies in the epoch of reionization:

- **GRAPES**: HUDF, G800 10 orbits x 4 PAs
- **PEARS**: G800, 8 fields to 5 x 4 PAs
- **FIGS**: G102, 4 fields 8x5PAs
- **GLASS**

Shallower, wider surveys emphasizing galaxy physics:

- **3dHST**: G141, c. 2 orbit depth
- **WISPS**

WFIRST can do such surveys ~ 100 times more efficiently.
Deep Near-IR Imaging from Space

- The basis for most redshift records since WFC3-IR launched, including this example from Finkelstein et al 2013

GOODS and CANDELS have invested 1000+ orbits in deep HST imaging surveys.

These images show a z=7.51 LBG from Finkelstein et al 2013. Seen in NIR, not on optical.
Example of high redshift galaxy searching with HST: GOODS + CANDELS images of a z=7.51 LBG from Finkelstein et al 2013. Seen in NIR, not on optical.

FIGS HST G102 spectrum of this galaxy, showing a LyA line; from Tilvi et al 2016.
HST Spectra & Imaging Combined

Figures from Rebecca Larson et al: FIGS GS2_1406, a newly discovered $z = 7.452$ high-equivalent width emitter from the FIGS survey.
(Submitted 14 Dec 2017)

Figure 4. Images of GS2_1406 (circled in purple) from the CANDELS survey showing it to be a clear z-band dropout. *HST* images are $3.7'' \times 3.7''$ (61 x 61 pixels), while *Spitzer* images are $7.8'' \times 7.8''$ (13 x 13 pixels).
Approaches to Reionization with WFIRST

• Lyman break galaxy census
 – Science: ionizing photon budget; galaxy formation and evolution as a function of environment

• Lyman alpha galaxy hunting:
 – Science: Statistics (including clustering) indicate ionization fraction of IGM.

• Quasar hunting:
 – Science: Black hole growth; ionization fraction evolution from spectra
Lyman Break Galaxies with WFIRST

• Lyman break galaxy census
 – Science: ionizing photon budget; galaxy formation and evolution as a function of environment
 – Guest Investigator (archival) science:
 • Large samples at bright end from High Latitude Survey,
 • More sensitive search using Supernova Survey data,
 – Guest Observer deep field imaging.
A Large-Scale View of the Distant Universe

The Kinds of Numbers We’re Dealing With

<table>
<thead>
<tr>
<th>Redshift</th>
<th>Expected # (HLS)</th>
<th>Expected # (deg² GO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>~3,300,000</td>
<td>~21,000</td>
</tr>
<tr>
<td>7</td>
<td>~530,000</td>
<td>~9200</td>
</tr>
<tr>
<td>8</td>
<td>~280,000</td>
<td>~4000</td>
</tr>
<tr>
<td>9</td>
<td>~75,000</td>
<td>~1700</td>
</tr>
<tr>
<td>10</td>
<td>~19,000</td>
<td>~700</td>
</tr>
</tbody>
</table>

- Predictions assume smoothly evolving Schechter UV LF (Finkelstein 16).
- Limiting magnitudes = 26.5 for HLS (except for z=7, which is limited by z′$_{LSST}$ = 26.2 depth), with empirically derived (from HST) magnitude-dependent completeness applied.
- GO deg2 survey is a roughly 500 hr survey observing one square degree to m~29.
- To survey a sq. deg. with JWST to this depth would take several 1000's of hours of integration, plus extensive overheads.

![Histograms for z=7 and z=10](chart.png)
Lyman Alpha Galaxies with WFIRST

- Lyman alpha galaxy hunting:
 - Science: Statistics (including clustering) indicate ionization fraction of IGM.
 - Primarily done using GO deep field slitless spectroscopy
 - Rare, extreme objects from High Latitude Spectroscopic Survey?
Neutral Fraction Test: Lyman α Galaxies

Neutral and ionized regions / observed Lyα galaxies.

WFIRST can map Lyα galaxies over a field this size.
(163 cMpc, ~ 1 deg.)

Figures from Jensen et al 2012.

Ionized bubbles modulate visibility of Lyα. This is used to infer properties of the bubbles.

Prospects for LAEs with WFIRST

Figure 1 from H. Jensen et al 2012:
Left: ionized (white) & neutral (black) regions in simulated IGM
Right: Distribution of detectable LyA galaxies.
The Cosmic Dawn team is developing tools to plan for deep slitless spectroscopy with WFIRST

- V. S. Tilvi is doing simulations based on COSMOS CANDELS data with addition of Lyman alpha emitting sources.
- Isak Wold is generalizing his 3d data cube reconstruction algorithms (first developed for the GALEX grism).

Image: Simulated deep WFIRST grism images. Left hand panel is like the planned grism. This is for 120 ksec, which is comparable to a cosmic dawn deep field.
Simulation results

Left: input direct image.
Right: continuum subtracted data cube slice, generated by Isak Wold using his 3d reconstruction algorithm
Lyman alpha recovery results:
So far we have demonstrated recovery of LyA emitters down to $1e^{-17}$ erg/cm2/s. This brings us into the range of observed LyA galaxies in cosmic dawn.

E.g. Oesch et al source at $z=7.7$;

E.g., Zitrin et al source at $z=8.7$;

E.g., Zheng et al 2017, https://arxiv.org/abs/1703.02985;

First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at $z \sim 7$

FIRST SPECTROSCOPIC CONFIRMATIONS OF $z \approx 7.0$ LYα EMITTING GALAXIES IN THE LAGER SURVEY

Weida Hu1,5, Junxian Wang1,5, Zhenya Zheng2,3,6, Sangeeta Malhotra4,7, Leopoldo Infante3,6, James Rhoads4,7, Alicia Gonzalez4, Alistair R. Walker5, Lihua Jiang3, Chunyan Jiang2, Pascale Hibon10, Felipe L. Barrientos3, Steven Finkelstein11, Gaspar Galaz3, Wenyong Kang1,5, Xu Kong1,5, Vithal Tilvi4, Huan Yang1,4, XianZong Zheng12
Lyman alpha recovery results:

Hu et al 2017, https://arxiv.org/abs/1706.03586 (6 sources all $>\sim 1e^{-17}$ cgs)
Ly-a LF at z~7 from LAGER

Little Evolution of LyA LF at z ~ 3-6:
(Dawson et al 2005, Ouchi+08, Faisst+2014, Zhen+2016, ..)

At z~7:
1. Different Evolution at Bright & Faint Ends.
2. Bright-End Excess.

High Redshift Quasars with WFIRST

• Quasar hunting:
 – Science: Black hole growth; ionization fraction evolution from spectra
 – Guest Investigator science:
 • Large area of High Latitude Survey needed for these rare objects
 • WFIRST grism from HLSS, WFIRST IFC observations, or ground-based followup needed for confident quasar IDs
 • Further ground based spectra may be needed for full reionization testing.
Hunting the Sources of Reionization:
Quasars and AGN

• Accretion onto black holes \rightarrow hot accretion disks \rightarrow ionizing photon production.

• Census of AGN used to say, not enough for reionization. Recent changes:
 – Lower redshift of reionization from Planck;
 – New census of AGN from GOODS + CANDELS + 4 Msec CXO observations (Giallongo et al 2015)
Quasar at $z=7.51$
But this is just one object with line-of-sight variance.
WFIRST Grism is a valuable tool for quasar hunting.

- Powerful redshift machine:
 - quasar broad line resolved
 - measure both flux and width
 - for z>5, reaches AB ~24 for detection of average CIV lines

<table>
<thead>
<tr>
<th>Survey</th>
<th>Wavelength</th>
<th>Resolution</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>3d-HST</td>
<td>1.1-1.6</td>
<td>150</td>
<td>5E-17</td>
</tr>
<tr>
<td>EUCLID</td>
<td>1.0 -2.0</td>
<td>250</td>
<td>3E-16</td>
</tr>
<tr>
<td>WFIRST</td>
<td>0.95 - 1.9</td>
<td>600</td>
<td>5E-17</td>
</tr>
<tr>
<td>PFS</td>
<td>0.38-1.26</td>
<td>1900-3500</td>
<td>5E-17</td>
</tr>
<tr>
<td>DESI</td>
<td>0.36-0.98</td>
<td>2000-5500</td>
<td>1E-16</td>
</tr>
</tbody>
</table>
AGN and Reionization with WFIRST

• The Willott et al (2010) quasar luminosity function would imply
 – 2500 z ~ 7 QSOs,
 – 600 z ~ 8 QSOs,
 – 130 z ~ 9 QSOs, and
 – A handful up to z ~ 12.
Cross-correlating the 21 cm signal with Lyα-emitters in the epoch of reionization

Team member Erik Zackrisson leading this topic for Cosmic Dawn SIT

Lyα more easily transmitted from ionized bubbles in the intergalactic medium → Anti-correlation expected between 21 cm and Lyα-emitters in the partially reionized Universe

Measuring this anti-correlation will confirm that the redshifted 21 cm signal seen by SKA is real (i.e. not due to foregrounds) and provides strong constraints on cosmic reionization scenarios

Image Credit: D. Reynolds
Coordination of WFIRST and SKA-LOW Deep Fields

Team member Erik Zackrisson leading this topic for Cosmic Dawn SIT

WFIRST HLS deep field grism observations over 5 deg² down to \(5 \times 10^{-18} \text{ erg s}^{-1} \text{ cm}^{-2}\) → 4000 LAEs at \(z = 7\)
1500 LAEs at \(z = 8\)
300 LAEs at \(z = 9\)

If IGM mostly ionized at \(z \approx 7\) →
Much stronger 21 cm – Ly\(\alpha\) cross-correlation \(\xi\) signal at \(z = 8-9\) (WFIRST)
than at \(z \approx 7\) (e.g. Subaru HSC)
Synergies with Subaru
Subaru and WFIRST Lyman Alpha Samples

• **For Lyman alpha out to z=9.35, PFS followup can tell us about line widths and asymmetries.**
 – We have been developing the use of LyA profiles as indicators of LyA escape in individual galaxies (Yang et al 2017, ApJ 844, 171)
 – Such followup can refine measurements of LyA transmission, and hence reionization tests

• **HSC medium band imaging** could complement a deep grism survey, providing photometric measurements of strong lines in the optical (e.g. LyA for 2<z<3, where WFIRST grism would get rest optical lines)

• **HSC Deep Optical Imaging** can help separate Lyman alpha emitters from other emission lines.
Subaru and WFIRST Lyman Break Samples

• **Deep z-band HSC imaging** can enhance $z \sim 7$ LBG samples from WFIRST dramatically.
 – The anticipated z-band depth of LSST is 26.2; HLS goes to 26.5. Would like to go ~ 0.5 mag deeper.
 – Over what area...? TBD, but at least a few square degrees.

• **PFS Spectra for Lyman Alpha Line Fractions in LBG Samples**
 – WFIRST grism spectroscopy will reach line fluxes $\sim 1e^{-16}$ erg/cm²/s over the 2000 sq. deg high latitude survey.
 – LyA lines from $z>7$ galaxies are rarely above $1e^{-17}$.
 – PFS spectroscopy can address this, for $z < 9.36$
 – Each night could follow up 2400-9600 targets to flux levels of $0.7e^{-17}$ to $1.5e^{-17}$ erg/cm²/s
 – *This would turn the LBG sample from “only” ionizing photon census to also testing IGM neutral fraction*
Subaru and WFIRST Quasar Studies

• QSOs found in HLIS may need followup spectroscopy to confirm their nature.
 – Surface density low \rightarrow IRCS? Or PFS, as a small part of a larger target selection batch?
• Where the HLSS covers the field, the WFIRST grism may provide adequate confirmation of quasars... But the proximity zone may require a clean ground-based fiber or slit spectrum \rightarrow PFS (or IRCS)
Deep Thoughts on Field Selection
Thoughts on Deep Field Selection

JWST NEP Time-Domain Field:
- Accessible to JWST, and WFIRST, 365/24/7
- Darkest spot in the sky
- Clean region for extragalactic survey
- Ancillary data from radio through X-ray (incl. Cy25 HST UV-visible of central r~5', and LBT/LBC Ugrz + Subaru/HSC giz)
- Initial JWST GTO (Windhorst IDS team) coverage with NIRCam+NIRISS WFSS of 4 discrete spokes extending to ~7' (~49hrs total)
 - Each epoch: AB~28.5 mag in 8 filters w.NIRcam imaging, and AB~27.5 mag for parallel low-resolution NIRISS grism spectroscopy over a 12x12' FOV.
 - Superluminous Supernovae found with JWST could still be there for WFIRST
Closing thought on Subaru WFIRST program

• Personally, I like the idea of mixing key projects and smaller projects with Subaru.

• 100 nights is a lot, yet it sounds very finite...

• But if even half of that is spent on PFS spectroscopy, we could be discussing 10^6 spectra: A much bigger number to share!

• Work out a mechanism for many science cases to have a fraction of the fibers in each PFS field.
Conclusions

• WFIRST will be a powerful tool for exploring Cosmic Dawn.
 – Both sources of reionizing photons, and probes of the neutral fraction.
 – A combination of Guest Investigator (archival) studies, and Guest Observer WFIRST studies
 – Combining WFIRST with Subaru observations will enable science beyond the reach of either observatory alone.
 • PFS followup: LyA galaxies, quasars, and LBGs for LyA lines
 • HSC imaging: z band for LBG selection; deep optical for LyA identification; and medium or narrow bands to complement grism surveys.
 – I and other team members will be glad to discuss